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Lashof and Rothenberg have recently announced the following 

THEOREM. Let Mn be a compact topological manifold with boundary 
iVn"~1, with fundamental group satisfying condition S. 

(a) If HA(M; Z2) =HZ(N; Z2) = 0, and n è 6, M admits a PL manu 
fold structure. 

(b) If N already has a PL structure, HA(M; Z2)=*IP(N; Z 2 ) = 0 
and n*z 5, then M admits a PL manifold structure agreeing with the 
given one on the boundary. 

The condition S is tha t wi(MXTk) and Ti(dMXTk) satisfy the 
necessary conditions for the splitting theorems to hold, where Tk is 
the è-torus. If iri(M) and Ti(dM) are free abelian, then condition 5 
is satisfied. The purpose of this note is to relax the condition on the 
fundamental group. 

THEOREM 1. Let Mn be a closed, orientable topological manifold of 
dimension n^7 with H4(M; Z2) = 0. Then M has a PL structure. 

PROOF. By [ l ] and [2] or by [3], the stable homeomorphism con­
jecture is true in these dimensions, so M has a stable structure. By 
[4], TI(M) is generated by imbedded one spheres with product 
neighborhoods. Let ƒ»: S]XDn~l—*M be such imbeddings, i = l, 2, 
• • • , k. We may assume that the /,(5JX-Dn~1) ,s are disjoint. Let 

0 < a < l and Dn
a~

l= {x^Rn~l\\\ x|| g a } . Henceforth we ignore the ƒ* 
and consider SiXD^CSiXD^CM. 

Let 

* 1 

'M - M - U (int(S, X Dl )) 

and 

M' - F U U ( Z ) ! x r 2 ) . 

That is, perform surgery on M to kill 7ri(M). Then 7ri( i f ' )=0 
and H*(M'; Z 2 ) = 0 . By Lashof and Rothenberg, M' has a PL 
structure. Let V^M-V*^ (SlXDT^^M'-U^ (A2XS*-2). 

1 This work was partially supported by NSF Grant GP-8615. 
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Then V is an open subset of M', so V has a PL structure. Let e» be 
the end of F contained in SlXD71"1- Then wi(€i) = Z, so by Siebenman, 
€i has a connected PL manifold neighborhood Ni with Ni 
£&NiX[09 1). Let Wi^NUdtâXDÎT1). Then IF, is an A-cobor-
dism between dNi and di^XDl'^^S^S"-*, and hence IF» satisfies 
the hypothesis of the theorem of Lashof-Rothenberg, and we extend 
the triangulations on dNi and âGSjX-Dâ"1) to all of Wi. Doing this 
for each i = 1, 2, • • • , k, we get a triangulation for ikf, the triangula­
tion induced from M1 on V—UNi, the triangulation of Wi, and the 
natural triangulation on 5< X-D2"1. 

THEOREM 2. Le/ iWn èe a compact orientable manifold with boundary 
Nn~l and suppose R\M\ Z2)=HZ(N; Z2) = 0 . Then any PL structure 
on N extends to a PL structure on M, provided n^8. 

PROOF. The proof is essentially the same as the proof of Theorem 1. 
As before wi(N) is generated by imbedded 1-spheres with product 
neighborhoods. Since N is a PL manifold, we may assume that the 
imbeddings ƒ»: SlXDn~2—>N are piecewise linear. We use the maps 
fi\SlXDn-2 to attach handles D2XDl~2 to M. Call the resulting 
manifold Mi. Then dMi is a PL manifold with trivial fundamental 
group. We now perform surgeries on Mi as in the proof of Theorem 1 
to get M'. Then TTI(M') =Ti(dM') = 0, H*(M'; Z2) =H*(dM'\ Z2) = 0 , 
so by Lashof and Rothenberg, M' has a PL structure agreeing with 
the given PL structure on dM'. Just as in Theorem 1, Mi then has a 
PL structure agreeing with the given PL structure of dMi=dM'. 

Let W=M-\Mfi{S\XDn-2)). Then W is an open subset of Mu 

and so W is a PL manifold. Let et- be the end of W contained in a 
neighborhood of fi(S]XD1^2). Then et- is tame and 7ri(et) = Z . By the 
relative Siebenman theorem, e» is collared. Tha t is, there is a con­
nected PL manifold neighborhood F» of u such that F» is closed in 
W, frontier of Vt is compact submanifold of W% and Vi^dViX [0, 1), 
VinidW£*d(ViridW)X[0, I ) . Let Z7<=7<U/,(5jX2?S"a). Then Ui 
is a compact topological manifold with a PL triangulation on d Ui. 
(The triangulations on dVi and ôikf agree on the dViC\dMi). Now 
Ti(Ui)=Z, HA{Ui\ Z2)=SP(dUi\ Z 2 )=0 , so by Lashof and Rothen­
berg, the triangulation on d Ui extends to a PL triangulation of Z7». 
Doing this for each i we get a PL structure on M that agrees with 
the given PL structure on dM. 

I have been told that R. C. Kirby and/or L. C. Siebenman have 
proved a stronger result independently and previously. Theorems 1 
and 2 may still be of interest, however, in that the proofs remain 
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valid without the condition on the cohomology groups, provided one 
can remove this condition in the theorem of Lashof-Rothenberg. 
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