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The linear space £ ( £ , F ) of all continuous linear maps of the 
Banach space E into a Banach space F is the completion olE'®F (all 
continuous linear maps with finite dimensional range) for a Haus-
dorff locally convex topology /. The topology / is the supremum of 
the strong operator topology [2, p. 475] and the topology of uniform 
convergence on the unit ball of E, F having the a(F,F') topology. 
The notation is patterned after [4]. In this context the result is 
stated in the following way. 

THEOREM. £t(E,F)=E'®tF. 

The topology t is not a tensor product topology in the sense of 
Grothendieck [3, p. 88]. 

In reference [ l ] we treat the general question of the approximation 
of a class H of operators by the operators E' ® F. The class H is taken 
to be the linear operators, the continuous operators, the completely 
continuous operators, the weakly compact operators, or the compact 
operators. Topologies are given on a larger space G of linear operators 
such that H is a subspace which is either the closure or the comple­
tion of Ef®F. The above theorem is one example. In this case it is 
possible to give the following proof without reference to the more 
general approach used in [ l ] . 

PROOF. The space L{E,F) of all linear maps of E into F is the 
completion of E'® F for the strong operator topology. Now consider 
E' ® F as a collection of operators that map the Banach space F' into 
the Banach space E'. The space L(77/,E /) of all linear maps of F' into 
E' is again the completion of E'®Flor the strong operator topology. 
These statements are true because a Cauchy net for the strong 
operator topology always converges to a linear operator (F and E' 
are both complete); and, every linear operator is the limit of such a 
Cauchy net because for every finite dimensional subspace of the 
normed space E and of the space F' with the <r(F',F) topology there 
is a continuous projection onto the subspace. 

1 The author was partially supported by a grant from the National Science Foun­
dation, NSF GP-7492. 
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Consider the natural injection of L(E,F) and L{F'tE
f) into the 

space of linear forms defined on E®Ff. For each ƒ in L(E,F) we have 
the linear form which maps x®y' to <f(x), yf>. For a g in L(F\Ef) 
the corresponding linear form maps x®y' to <x, g(y')>. On the 
linear forms obtained from Ef® F the two strong operator topologies 
can be expressed as uniform convergence on families d\ and (£2 re­
spectively. The families are composed of subsets of E®Ff with uni­
form convergence on members of Cti giving the strong operator topol­
ogy obtained from L(E, F) and uniform convergence on members 
of ($2 giving the strong operator topology obtained from L(F\ Ef). 
The family Cti is all <r(E®F', Ef®F)-closed balanced convex hulls 
of sets of the form C= {xi®yf: i = l , 2, • • • , n and | |y | | ^ l } where 
the set (xi, x2, • • • , xn) ranges through all finite subsets of E. In 
a similar manner the members of 6,2 are obtained from sets of the 
form {x®yj:j=*l, • • • , m and | | x | | ^ l } . The members of Cti are 
compact for the <r(E®F', E'®F) topology because the sets of the 
form C are compact and the closed convex hull of each such set is a 
subset of the compact set C+ • • • +C where the sum is taken n 
times [5, p. 35], 

When we consider L(E,F) as linear forms, Grothendieck's com­
pletion theorem [4, p. 248], [5, p. 145] tells us that L(E,F) is all 
linear forms whose restrictions to members of &i are <r(E®F'i Ef®F) 
continuous. By the same reasoning, L(F',E') is all linear forms whose 
restrictions to members of Œ2 are continuous. Now consider £(E, F) as 
linear forms on E® F' and observe that £ ( £ , F) =L(E, F)nL(F', E'). 
This is because £(E, F) is all members of L(E, F) which have ad-
joints defined on F', i.e. all linear maps which are weakly continu­
ous and thus continuous [5, p. 199]. Thus the injective image of 
£(E,F) is all linear forms whose restrictions to members of 0fciW0fc2 

are <r(E®F', Ef®F) continuous. 
Direct computation will verify that a linear form which has con­

tinuous restrictions on -4 i£( l i and A2SO2 has a continuous restric­
tion on ^4i+^42, because of the compactness of Ai. I t is also true that 
A l+A2 is closed and contains the convex hull of i4iU^42. This tells us 
that all linear forms from the injection of £(E,F) are precisely a 
linear forms whose restrictions to the closed balanced convex hulls of 
members of ftiUC^ are <r(E®F't Ef®F) continuous. 

A final application of Grothendieck's completion theorem results 
in the injection of £(E,F) being the completion of E'®F for the 
topology of uniform convergence on members of Ö1UÖ2. We reverse 
the injection to obtain the desired result for the linear space £(E,F) 
of continuous linear operators. The topology of uniform convergence 
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on members of &iW0t2 becomes the supremum of the strong operator 
topology and the topology of uniform convergence on the unit ball of 
E with F having the cr(F,F') topology. The latter topology was the 
strong operator topology on L(F',E') before we went over to the 
linear forms. 
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