
ON THE EXISTENCE AND IRREDUCIBILITY OF 
CERTAIN SERIES OF REPRESENTATIONS1 

BY BERTRAM KOSTANT 

1. Introduction. 1. By the principal series one means here the unitary 
representations of a semisimple Lie group G arising from induction to 
G by characters on MAN corresponding to characters on A. Although 
long conjectured to be irreducible, this family of representations has 
been shown to be irreducible only for special groups. For example see 
[9] for complex G and see [3] for the group Sl(w, R). In the general 
case (all G) irreducibility has been proved by Bruhat [ l ] using ana­
lytic methods, only however, for the "regular" characters on A. A 
proof of the irreducibility of all the elements of the principal series is 
but one application of certain algebraic results, stated here, on 
modules of the universal enveloping algebra U of the Lie algebra g 
of G. 

A second application is the proof of the existence and irreducibility 
of the complementary series for all semisimple Lie groups generalizing 
in a natural way the case of SI (2, R). I t is shown also that if dim A=l 
(split rank 1 case) then except for possibly the trivial (one dimen­
sional) representation the most general irreducible unitary represen-
sation of G admitting a fixed vector for K (Ad0i£ is the maximal com­
pact subgroup of AdflG) belongs either to the principal or comple­
mentary series. 

1.2. If ûc is the complex dual to the Lie algebra a of A then any 
X£ctc defines a one dimensional representation 6—>bx of B = MAN. 
If X* is the space of all analytic infinite functions f on G such that 
f(ab)=b~*f(a) where a £ G , bE:B then Xx is in a natural way a U-
module. The results above are mainly applications of a theorem 
(Theorem 2) giving a necessary and sufficient condition on X for Xx 

to be an irreducible (in the usual algebraic sense) C/-module. In par­
ticular there arises, in a natural way, a region in etc which we call the 
critical strip (CS) for which Xx is always [/-irreducible. The critical 
strip contains all of the X corresponding to the principal series and its 
closure contains all the X corresponding to the complementary series. 

1 By invitation the author addressed the annual meeting of the American Mathe­
matical Society in Cincinnati on January 22, 1962 on the topic A survey of Lie group 
representations. The present paper is partially an outgrowth of some of the ideas on 
multiplicities of representations stated during that talk; received by the editors 
March 3, 1969. 
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1.3. Now X* contains a unique function, 1\, which is the constant 
1 on K. In the general case Xx is not irreducible and in fact the cyclic 
[/-submodule X* = U-l\ is not equal to -XTX. I t is proved, however, 
that if C is the complex Weyl chamber, suitably translated, then Xx

e 

is {/-irreducible for all X £ — C and that every irreducible [/-module Z 
such that Zl9^0 (Ï is the Lie algebra of K) is equivalent to X\ for 
some X £ — C. On the other hand, if X £ C one always has X* = XX and 
tha t every [/-module Y cyclically generated by an element in Y$t 

where dim Y* = 1, is equivalent to a quotient of Xx for some X £ C. 
The completeness result on the unitary representations of G in the 

split rank 1 case is a consequence of another theorem which asserts 
that in the split rank 1 case if G is chosen as defined in §4.1 the multi­
plicity of any irreducible representation of K in Xx , for any X£ctc, is 
a t most one. 

2. The principal series. 1. Let G be a Lie group, not necessarily 
connected. Let g be its Lie algebra, so that g is a Lie algebra over R. 
Assume that g is semisimple and assume that for any a £ G the oper­
ator Ad a on the complexification of gc of g, defined by conjugation 
of G by a, lies in the adjoint group of gc. 

REMARK 1. The second assumption is of course satisfied if G is 
connected. However it is also satisfied if, for example, G is the set of 
rational points of a complex connected algebraic group defined 
over R. 

We recall that a subalgebra bCg is called parabolic in case the 
complexification of b contains a maximal solvable subalgebra (a 
Borel subalgebra) of go 

Let bCg be a minimal parabolic subalgebra of g (all such are con­
jugate) and let n be the nil-radical of b. Then b can be written as a 
semidirect sum b = ï)+n where the subalgebra §Cb is unique up to 
conjugacy. 

An element x £ g is called real semisimple in case ad x is diagoniz-
able on g (and hence real eigenvalues). 

Now let a be the set of all elements in the center of % which are real 
semisimple. Then one knows that a is an abelian subalgebra of g 
maximal with the property that all of its elements are real semisimple. 
Furthermore if AQG is the corresponding subgroup then A is simply 
connected and hence A^Rr where r = dim a. 

Now let GA be the centralizer of A in G and let NQG be the sub­
group corresponding to n. Then one knows that GA normalizes N and 
GAHN= (e). Let B = GAN. Then the Lie algebra of B is b. Moreover 
there exists a closed subgroup MQGA such that GA is a direct product 
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GA = MA. Moreover if D ( = Ker Ad) is the centralizer of G* in G 
(Ge is the identity component of G) then D is discrete, normal and a 
can be chosen so that DÇ1M. With this additional property M is 
unique and we shall assume that M is so chosen. One thus has 
B = MAN. 

Now let ûc = HomR(a, C) be the complex dual to a. Any XE&c 
defines a character &—>6X on B as follows: For bÇMN put ôx = l. If 
&G-4 then one may uniquely write 6 = exp x, for # £ a . Put 
&x = exp (X, x). One obtains in this way all complex characters on B 
which are trivial on M. 

2.2. We will be concerned with the representations of G induced 
by the one dimensional representations of B given by 6—>&\ XEctc-
Let XEctc and let X(X) be the space of all measurable functions ƒ on 
G such that f(ab)=lr*f(a) for all aEG, bGB. Then X™ is a G-
module where if a(EG and fÇzX™ then a-/E-^ (X) is given by (a •ƒ)(#) 
- / (a - 1 *) for all gEG. 

Now for certain X one obtains a unitary representation: Indeed we 
first observe that G/D is a centerless Lie group with at most a finite 
number of connected components. As such it contains a maximal 
compact subgroup 2£0, unique up to conjugacy. Let KQG be the 
unique subgroup of G containing D and such that K/D = KQ. Let 
ÏCg be the Lie algebra of K so that Ï corresponds to a maximal com­
pact subgroup of the adjoint group of g. We can choose K0t and do 
so, so that the Cartan involution of Q defined by Ï leaves §, the fixed 
reductive part of t>, stable. 

Now let L = KC\M. Then the X-homogeneous space K/L is con­
nected compact and has a unique ÜT-invariant measure co of total 
volume 1. Now let a'Qa'c be the real dual to a and letpEci' be defined 
by (p, x) = | tr ad x\ n for all xEct. 

Now if XEctc *s °f ^ e form \=p+iv where ?Ect', let #C„ be the 
Hilbert space of all ƒ E-X^(X) such that 

f l/l2«<». 
J K/L 

The integral is well defined since ƒ | K is constant on the left cosets of 
L in M. Furthermore 3C„ is stable under the action of G defining a 
representation sv of G on 3C„ which is in fact unitary. 

The family or series of unitary representations sv obtained as v 
runs through a' is called the principal series of class zero or simply, 
in our terminology, principal series. 

It has been long conjectured that all members of the principal 
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series are irreducible. For certain special groups (e.g. some classical 
groups) this has been proved. Using analytic methods (e.g. the 
Schwartz-Kernel theorem) Bruhat has proved irreducibility for the 
case where v is a regular element of a'. If G is complex, Parthasarathy, 
Rao and Varadarajan [9] have proved irreducibility for all v. Based 
on a similar approach we can prove 

THEOREM 1. For all G every member of the principal series sv is an 
irreducible unitary representation. Moreover sv is equivalent to sn if and 
only if v and v\ are conjugate under the Weyl group. 

3. The [/-module and the critical strip. 1. Theorem 1 is an appli­
cation of the much more complete result which follows: The method 
used in the proof is purely algebraic and is modeled after [9] in the 
sense that it involves a detailed examination of a family of polynomial 
valued matrices. The result rests upon [6], [7] in the same sense 
that [9] rests upon [5]. 

Now for any X£ctc let Xx be the subspace of all / £ X ( X ) which are 
iC-finite, i.e., K-f spans a finite dimensional space. The elements of 
Xx are analytic functions (real sense) in G and although X* is no 
longer in general a G-module it is, however, a [/-module where U is 
the universal enveloping algebra of g over C. Indeed if ƒ £-3Tx then 
x-fÇiXx where x £ g and x-f is the function on G given by 

d 
X'f(g) = — /(exp -tx-g) | M . 

at 

The next result gives the set of all X£ctc such that Xx is an irreduci­
ble (in the usual algebraic sense) [/-module. 

Let A C a' be the set of (sometimes referred to as restricted) roots 
for the action of a on g and for any 0 £ A let 8*£g be the correspond­
ing root space. A lexicographical ordering may be introduced into a' 
so that if A+ is the set of positive roots then 

n = Ed*-
4>eA+ 

Now for any 0 £ A the space [g*, 8~*]P\a is one dimensional and is 
spanned by a unique element w<j> such that (0, w^) = l . If 0 £ A then 
0 /2 or 20 may be a root. Let A1 be the set of all 0 £ A such that 0 /2 
is not a root (the set A1 may be characterized as the set of roots which 
may be embedded in some simple system) and let A+ be the positive 
elements in A1. Of course if 0GA+ then 20 may be a root. 

For any 0GAîj. let T+QR be the open interval, symmetric about 
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the origin, given by T^ = {tÇzR\ \ t\ <d im g*/2 if 20 is not a root and 
| / | <d im g*/2 + l if 2<j> is a root} . 

We now define a region in ctc, symmetric around the point p, which 
arises in a natural way from our theory and which plays a special 
role in the representation theory. We will call the region the critical 
strip, CS, and it is defined by 

CS = { X G ^ I Re(X - p, w<t) G T+ for all <j> G ÀJ .} . 

For Sl(2, R) it reduces to the strip of all z<j>, zGC, (<£) =A+, such 
that 0 < R e z<l. 

Now for any root 0GA+ let m$ be the integer or half-integer given 
by w^ = (dim g*/2)+dim g2* and let ŵ  = l if 2<f> is not a root and 
#0 = 2 if 20 is a root. 

I t is somewhat easier to describe the set of all XGctc such that X* 
is not [/-irreducible. 

THEOREM 2. Let XG#c be arbitrary then the LT-module X* is not 
irreducible if and only if there exists a root 0GA+ such that 

(1) (k-p,W4)$T+and 
(2) {X—p, w<f>)+m<j, = 0 mod n$Z. 
In particular Xx is V-irreducible whenever X lies in the critical strip 

CS. 

3.2. A [/-module X will be said to be admissible in case X\ the 
annihilator of Ï in X, is one dimensional. Let C be the set of U equiva­
lence classes {X} of all admissible [/-modules X. 

Now for any uÇzU one knows there exists a unique element 
PuGU(a), (the enveloping algebra of a) such that u—puÇ:nU+Ut. 
Also if Ul is the centralizer of Ï in U then the map u—*pu is a homo-
morphism on [/*. Now regarding [/(a) as the polynomial ring on etc 
let <3x£<3, for any XGac, be the set of all { X J G C such that w£ 
= £W(X)S for all uG Ul where Xt = (©. 

Now if W is the Weyl group operating in a c let W be the group of 
affine transformations in etc of the form X—><JX = O'(X — p ) + p where 
<TE:W. One has 

PROPOSITION 1. Q is a union of C\ ewer a// XG#c- Moreover if X, 
PGGC ^ W @x a w ^ ®*ar^ ei/Aer disjoint or equal and they are equal if and 
only if\ and v are ffi conjugate. 

REMARK 2. One readily shows that for all XGctc o n e bas {X*} G@x. 
3.3. With regard to irreducibility one has 

PROPOSITION 2. For any XGctc there exist a unique element {Z*} G @x 
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such that Zfi is U-irreducible. Moreover any irreducible U-module Z 
such that Zf7*0 is admissible and hence is equivalent to some Zx where X 
is unique up to W conjugacy in etc. 

For any XEctc Z* may be explicitly given by putting Z*= U/L\ 
where L\ is the left ideal in U defined by 

U= {uEU\ f <~>o(X) = 0 for all vGU}. 

Here WoG Uk, for any wG [/, is the component of w in Uf correspond­
ing to the direct sum [/ = [fe, U]+ Uk. 

REMARK 3. Note that by Theorem 2 one has that {Xx} = {Z*} if 
and only if X does not satisfy the condition of Theorem 2. In particu­
lar the equality holds if X£CS. 

3.4. Now let u—>u* be the conjugate-linear, antilinear ((uv)9 — v8u9) 
involution of U satisfying #*=— x for #£g. A Hermitian bilinear 
form ((£, rj) = (77, £), c(%, rj) = (c%, TJ) = (£, #7)) on a [/-module X will be 
said to be [/-invariant in case (w£, rj) = (J, w*rç) for all uÇzU, %, yGX. 
If X£ftc its conjugate X£ctc is defined relative to the real form a' of 
ofc. 

PROPOSITION 3. Le/XEctc. TÂ w /Aere exists a nontrivial U-invariant 
Hermitian bilinear j or m on Zx if and only if\ and —X+2p are W con­
jugate. Moreover in this case the form is unique up to a real scalar. 

If X and —X+2p are JF conjugate then the [/-invariant Hermitian 
form may be given explicitly by 

(«•&,!>•&) = p(vau)°QJ 

where u,vÇzU and £x £ (Zx)* is the image of 1 in Z* = U/L\. We denote 
the form by B\ and we will be concerned as to when it is positive 
definite so that Nelson's theorem, [8], can be applied. 

4. The polynomial valued matrices P 7 , QT and Ry. 1. Now let 
Ge be the set of all elements of the adjoint group of gc leaving g stable. 
Note that the considerations above may be applied to Ge instead of 
G. We let Ke and Me be the subgroups of Ge corresponding to the 
subgroups K and M of G. Also let T be the set of all equivalence 
classes { V\ of all irreducible (finite dimensional, continuous) Ke-
modules F such that V9?*0. 

For any 7 g r fix a ̂ -module Vy in the class 7 and let l(y) = dim Vy°. 
Also let HQ U be the subspace spanned by all powers x>, j = 0, 

1, • • • , for all nilpotent elements x in the complexification pc of p. 
Then if 7 £ r is arbitrary one knows from [ó] that dim Ey = l(y) 
where Ey = HomKe(Vy, H). 
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Now if Vif * = 1» 2, • • • , l(y), is a basis of Vy° and €y, i = l , 2, 
• " • » ^(T)» is a basis of £ T we define an l(y)Xl(y) matrix Py with 

coefficients in U(a) by defining P^ = peJ(vi). I t is clear that a change 
of basis of Ey and F^* o n^y changes Py into a matrix of the form 
APyB where A and B are nonsingular matrices with coefficients in 
C. In particular py = àzt Py is an element of U(a) which, up to a 
scalar multiple, is independent of the choice of the bases. Also for any 
X£ctc the rank of the scalar matrix Py(\) is also independent of the 
basis. 

Now if X G etc then the induced module Xx is not always [/-irre­
ducible (see Theorem 2). In fact if 1\ is the unique element of Xx 

which as a function on G equals the constant 1 on K (and hence is 
a generator of (-XTX)!) then in general the cyclic submodule LM\ 
= X*QX* is not equal to -X"x. A measure of its failure to equal Xx is 
given in the next proposition and is expressed in terms of the matrices 
py. 

If 7 £ r and X\ is the finite dimensional space of all f(EXx which 
transforms under Ke according to y then it is obvious that Xx is a 
direct sum of X\ over all y. The same is true of Xx . In Xx the multi­
plicity of y is obviously l(y). In Xx , however, the question of multi­
plicity is less trivial. 

PROPOSITION 4. For any XEctc and 7 £ T the multiplicity of y in the 
U-cyclic submodule U'1\=X* of the induced module Xx is exactly the 
rank of the matrix PY(X). 

In particular one has 

COROLLARY TO PROPOSITION 4. For any XEaé one has X* = U- lx if 
and only if py(K) F^O for all y ET. 

4.2. Now for any y CET one defines another l(y)Xl(y) matrix Qy 

with coefficients in U(a) by the relation Qy(K) =Py(-\+2p)* for all 
X£#c . Here * denotes the Hermitian adjoint of the matrix. 

Now finally let Ry be the l(y) Xl(y) matrix with coefficients in U(a) 
defined by Ry = QyPy. Now whereas the Py describe the structure of 
Z7-module X* the Ry describe the structure of the irreducible U 
modules Zx. Moreover it determines the signature of the [/-invariant 
Hermitian structure on Zx when such a structure exists (that is 
when X and — X+2p are W conjugate). Also Ry is invariant under the 
action of W. 

The [/-modules Z* are in a natural way ^ -modules since the ideals 
L\ÇZU are stable under the adjoint action of Ke on U. I t follows that 
& is a direct sum of the finite dimensional subspaces Zx, Y £ I \ of 
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all elements in Zx which transform under K$ according to the repre­
sentation class y. 

PROPOSITION 5. For any XG^c» Y G I \ the multiplicity of y in the 
irreducible U-module Zx is exactly the rank of the matrix i?7(X). More-
over for any aÇEW one has Ry(K) = Ry(cf\). 

Finally if X and —X + 2p are W conjugate (so that the Hermitian 
bilinear f or m B\ on Zx (see §3.4) is defined) then Ry(K) is a Hermitian 
matrix. Furthermore Ry(K) is positive semidefinite if and only if 
B\\ Z* is positive definite. In particular then (since the Z\, over ally(E.T, 
are in any case B\ orthogonal) B\ defines a pre-Hilbert space structure 
on Zx if and only if Ry(\) is positive semidefinite f or allyÇT. 

Now for any y ET let r? = det Ry. One thus has that ry(K)^0 for 
all y if and only if (Zx) = (Xx). Tha t is, one has 

COROLLARY TO PROPOSITION 5. For anyXG&c the induced U-module 
Xx is V-irreducible if and only if ryÇK) 7*0 for all y G r . 

Let T G T be arbitrary and put qy = det Qy so that ry = qypy. But 
since Qy(\) = Py(-l+2p)* one has that 

ry(\) = ^ ( - x + 2p)py(\) 

where conjugation in U(a) is the conjugate linear automorphism of 
U(a) which is the identity on a. The determination of the ry thus 
depends upon the knowledge of the py. I t is the latter that we can 
explicitly give. Practically all the results announced here follow 
from the knowledge of the py. However, one shows that the deter­
mination of the py reduces to the split rank 1 case. 

5. The split rank one case and 2-transitivity on a unit sphere. 
1. In this section we shall assume that dim ct = l . We first need an 
explicit description of I \ We find that the elements of T are param­
eterized by a pair of integers i(y) and j(y) in a manner now to be 
described. 

Let $ c £ 8 c be a normal principal TDS in the sense of [7] which is 
stable under conjugation over g, and let 6 = ôHêc- Let Se be the inter­
section of Ge with the subgroup of the adjoint group of gc correspond­
ing to $c« The group Se is centerless and is never connected. In fact 
if t is the one dimensional algebra given by t = 6 H Ï and Te is the 
subgroup of Se normalizing t then Te is isomorphic to the orthogonal 
group 0(2, R). 

Now let bÇ-Te be a fixed element not in the identity component of 
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T$. Then 62 = 1. The subspace [t, p] is stable under b and we let b be 
the + 1 eigenspace of b in [t, p]. 

REMARK 4. We shall not use the fact but it can be shown that the 
only possible dimensions of b are 1, 2, 4 or 8. Moreover there is a 
natural structure of a division algebra on b with the identity lying in 
the one dimensional space bP\3. Of course the division algebras in 
the four cases are 

(1) the real numbers, 
(2) the complex numbers, 
(3) the quaterions and 
(4) the Cayley numbers. 

They occur, respectively, in the case when G is a suitable real form of 
(1) the complex orthogonal group, 
(2) the complex special unitary group, 
(3) the complex symplectic group and 
(4) F4. 

One also can show that dim b = dim Q2 a+1 where (a) =A+ which is of 
course consistent with the known fact that the dim g2* for any root 4> 
takes on only the values 0, 1, 3, 7. 

5.2. Now let SO(b) and 0(b) be, respectively, the special ortho­
gonal group and orthogonal groups operating on b relative to the 
restriction of the Killing form to b. Consider the (complex) symmetric 
algebra S(b) =S over b and its homogeneous components S*. 

Of course the action of 0(b) on b extends to a group of automorph­
isms of S. The homogeneous irreducible components of 0(b) on S are 
of course classical and well known. They are described as follows : Let 
q be the nonzero (quadratic) invariant of 0(b) in S2 and for any j let 
LyCSy be the space of harmonic elements in Sy (harmonic polynomials 
when S is regarded as the polynomial ring on the dual b'). 

Of course Ly = 0 if j^2 when dim b = l . In what follows i and j 
take all nonnegative integral values except when dim b = 1 (ortho­
gonal case) where j is restricted to 0 and 1. With such a restriction 
the most general homogeneous irreducible component of 0(b) on S 
is uniquely of the form giLy. For SO(b) the same statement is true 
except that when dim b = 2 (unitary case) the two dimensional space 
Ly, j > 0 , is uniquely a direct sum of two irreducible components Lf 
and LJ and hence the most general homogeneous irreducible com­
ponent of SO(b) on S is uniquely of the form g*X0, <£Lf or qlLj'. 

Now let / be the centralizer of T$ in K$. Clearly b is stable under 
J inducing a map /—»0(b) and hence S is naturally a /-module. 

A crucial fact is given in the second paragraph of 
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THEOREM 3. The group J is connected and hence its action on b in­
duces a map /—>SO(b). Moreover, if dim b = 1, 2 this map is surjective 
and if dim d>2 then J is Intransitive on the unit sphere of b (e.g. if 
dim d = S then J operates as Spin 7). 

Furthermore (as a consequence of the 2-transitivity) in all cases the 
homogeneous irreducible components of J on S are exactly the same as 
the homogeneous irreducible components of SO(b) on $. That is, the 
qiLj(qiL}', qlLj and q{L0 if dim b = 2) are all irreducible and, when of 
the same degree, are inequivalent under the action of J. 

5.3. Now in it there exists a unique, up to sign, element z such 
that the eigenvalues of ad z\$c are 0, ± 1. If V is any finite dimen­
sional Ke module it is of course a ïc module and it follows easily that 
the eigenvalues of z in V are integers. 

The structure of V arises from 

THEOREM 4. Let Y £ T be arbitrary and let k be the highest eigenvalue 
of z operating in Vy and let Vy(z) be the corresponding eigenspace. Then 
Vy(z) is stable and irreducible under the action of J. Moreover k is a 
nonnegative integer and there exists a unique J-irreducible component 
YyClSk which is equivalent to the J-module Vy(z). Furthermore the 
correspondence Y—»FT thus set up between T and the set of all homo-
geneous irreducible components of J on S is a bijection. 

5.4. Now if Y G T then Yy by Theorem 4 is necessarily in any case 
a subspace of q*Lj for a unique i and j . We put i = i(y) and j=j(y) 
defining the two parameters mentioned in the beginning of §5. Note 
that k = 2i(y)+j(y) where YyQSk. 

Now À+ has only one element a and hence there is a unique element 
w £ a such that <a, w> = 1. Thus U(a) is the polynomial ring in w 
and hence if p(EU(a) we may write p = cJ0L?„1(w+Ci) where Cy£C. 

We can now state 

THEOREM 5. Let 7 E r and let i=i(y),j=j(y)> Then up to a nonzero 
scalar multiple 

py = [w(w + 2) • • • (w + 2(i + j) - 2)] 

• [(w - s + l)(w - s + 3) • • • (w - s + 2% - 1)] 

where 5 = dim Q2a ( = dim b —1 in the notation of §5.1). 

Any element X in aé is of the form ca where c £ C and any X £ a ' 
(the real elements) is of the form ta where /£JR. The ordering in a' 
is of course consistent with the natural ordering R. An element X£cic 
is called a root of p^ if pv(K) = 0. 
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REMARK 5. Note that by Theorem 5 all the roots of py are not 
only real but of the form na where n is an integer. Furthermore n 
is in fact an even integer if s 7*0 since s 9e 0 implies s is odd (it is re­
stricted to 1, 3 or 7). 

Next note that the maximal root of py is 0 when 5 = 0 and 5 — 1 when 
5 > 0 . Since p = (s+dim §a/2)a it follows that p is larger than the 
largest root and in fact between the two there is an interval of 
"width" dim g«/2 if 5 = 0 and dim 8"/2 + l if 5 > 0 . 

Now qy(\) = py(—\+2p). But since py is real it follows that qy is 
obtained by simply reflecting py through p. 

COROLLARY TO THEOREM 5. Using the notation of Theorem 5, if py 

is normalized so that the scalar multiple is 1 one has, where m = dim ga /2 
+s, 
qy = (-l)»«-i[(w _ 2m)(w - 2m - 2) - - • (w - 2m - 2(i + j) + 2)j 

• [(w - 2m + 5 - l)(w - 2m + s — 3) • • • 

•(w - 2m + s - 2i+ I)] . 

REMARK 6. Since ry = qypy one obtains an explicit expression for 
ry and like py all the roots of ry are real and of the form na where n 
is an integer and if 5 > 0 , n is necessarily an even integer. 

One notes also that independent of 7, ry has no root of the form 
p+ca where | Re c\ <d im g a / 2 if 5 = 0 and | Re c\ <d im ô V 2 + l if 
5>0 . This set is what we have called the critical strip. 

5.5. The situation in the case at hand (dim a = l) is even nicer 
than indicated by the last two results. Not only do we know py, qy 

and ry, but also, Py, Qy and Ry. This is a consequence of 

THEOREM 6. In case dim a = l (our present assumption) one has 
Ky) = 1 for all y. Thus Py = py, Qy = qy and Ry = ry. 

The proof of Theorem 6 comes out in the course of proving Theorem 
4. 

6. The determination of py, qy and ry in the general case» 1. We 
now return to the general case, that is, no assumptions are made 
about dim a. 

Let F be the group (of order 2r, r = dim a) of all elements of order 
2 in that subgroup of the adjoint group of gc whose Lie algebra is 
do One has FQKe. 

Now for any 0£Aîj_ let fo be the commutator subalgebra of the 
reductive subalgebra c t + m + X)?--2 Ö'0- Let G> be the subgroup of Ge 
generated by F and the connected subgroup (normalized by F) of 
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Ge whose Lie algebra is g+. The Lie algebra of G<t> is again ĝ  and we 
may apply all the preceding results to G* instead of G. Here the 
subalgebras of g* corresponding to ï, a and n are just the intersection 
of these algebras with ĝ  and are denoted by ï^, a* and n$. The sub­
groups corresponding to K and M are denoted by K$ and M^. 
Furthermore this is the split rank 1 case since dim a<t> = 1 and hence 
also the results of §5 apply where the role of w is played by the 
unique element w^^a^Qa such that (#, w<t) = l. 

Now let K^jy M<t>,e and T+ play the roles for G^ what Ke, Me and 
T play for G. Now ^ o p e r a t e s on gc and its restriction to g^.c induces 
a homomorphism Kt—tK+j. However, since FQK4, this map is a 
surjection. Moreover the kernel of this map is central in K4 and 
hence is a normal subgroup of M<f>. But since the latter maps onto 
M+,e it follows that we can regard 1^ as the set of all equivalence 
classes of (finite dimensional, continuous) irreducible K+ modules V 
such that VM+ = 0. Also by Theorem 6 one has that dim V%+ = 1 for 
all 5 G I V 

Now for any S Ç I ^ the integral functions i($) and j(ö) are defined 
(as in §5) and hence ps is given by Theorem 5 with w^ substituted 
for w. 

I t is necessary to consider a slight shift in ps (since <f> is not in 
general a simple root in À+). Let d<t> be the integral or half-integral 
scalar given by d^ = m$ — (p, w+) where m$ — dim g*/2 + d i m g2* (d^ = 0 
if <j> is simple) and let p(8) be the polynomial in w+ obtained from ps 

by substituting w^+d^ for w*. Thus if i = i(5), j=j(S) one has ex­
plicitly 

/><*> = [(w* + <f,)(w, + ^ + 2) • • • K + ^ + 2(i +j) - 2)] 

• [(^0 + dj, — S++ l)(w* + <Z* — 50 + 3) • • • 

•(»• + <*• - 50 + 2 i - 1)] 

where 5̂  = dim g2*. Also g(8) is obtained by substituting — w^+2(pf w+) 
for W0 in £5 and one puts r(ô) = g<8)£(5). 

6.2. Now let 7 £ T be arbitrary we wish to determine py
t qy and 

ryÇzU(a) explicitly. Now let # £ A + and since K^QKe we can con­
sider the -K^-submodule Vy(<t>) of Vy generated by Vy

 d. Now since 
M $ QM$ it follows from Theorem 6 that in a complete reduction of 
F7(0) into irreducible K^ components Vy(<t>) there are exactly l(y) 
components and that each Vy(<t>) belongs to a class S*(0)£ÏV Thus 
y defines elements 5*'(0)£r0, i = l, 2, • • • , l(y). We now state 
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THEOREM 7. For anyyÇT one has, up to a nonzero scalar multiple, 

1(7) 

F = n n p(iH*»-
0GÀ+ » = l 

Similarly qy and ry are respectively the products of g<**<*» and r(**(0)) 

over all 0 £ A + and i = 1, 2, • • • , £(7). 

REMARK 7. From the expression given for p(8), g(5) and r(ô) one 
notes that all the prime factors of py, qy and ry are polynomials of 
the first degree. 

6.3. Theorems 1 and 2 are consequences of Theorem 7. However, 
there are other conclusions. Let C (complex Weyl chamber) be the 
set of all X£ûc such that Re (X—p, w^) èO for all 0 £ À + . Every XGctc 
is if'-conjugate to an element in C or its negative - C . A s a conse­
quence of the explicit expressions of py and qy one has 

COROLLARY TO THEOREM 7. If\&C then pyÇK)9£0 for every yGT 
and hence, for all, y PyÇk) is nonsingular. 

On the other hand if\E-C then qyÇK) 7*0 for all y ET so that QyÇk) 
is nonsingular and hence 

rank J?T(X) = rankP^(X). 

Now whereas the irreducible [/-module Zx depends only on the 
1^-orbit of X this is not true of the induced module Xx or of the cyclic 
submodule X* = U-1\. As a consequence of the previous corollary and 
Propositions 4 and 5 one has 

THEOREM 8. For any X £ C one has X* = XK so that the induced 
module X* is U-cyclic. Moreover if Y is any V-module cyclically gener­
ated by Yt, where dim F ' = 1, then Y is equivalent to a quotient of X* for 
someXÇzC. 

For any \Çz — C the cyclic submodule Z ^ C P is V-irreducible and 
one obtains, up to equivalence, all irreducible U-modules Z, such that 
Z ^ O , in this way. 

7. Unitary representations and the complementary series. 1. Now 
let a* be the set of all XEctc such that 

(1) X and — %+2p are TF-conjugate (so that the [/-invariant Her-
mitian bilinear form B\ exists on Zx) and 

(2) B\ is positive definite on Z \ (therefore inducing a pre-Hilbert 
structure on Zx). 

Now let X £ a * and let 3CX be the Hilbert space completion of Zx. 
I t is easy to see that Nelson's theorem (see [8]) applies defining a 
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unique unitary representation 7rx of G in 3CX whose differential induces 
the given [/-module structure on Z \ 

Irreducibility follows easily. Also completeness follows using well-
known results of Harish-Chandra, [2], relating the action of g with 
that of G. That is, one has 

PROPOSITION 6. For any XEa*, 7rx is an irreducible unitary repre­
sentation of G. Moreover irx is equivalent to irv if and only if X and v 
are VV-equivalent. Furthermore f or any XE#* one has ( i î ^ ^ O and, 
up to equivalence, one thus obtains all irreducible unitary representa­
tions of G on a Hilbert space H such that HKT^0. 

7.2. The obvious question is: what is the subset a*Caé? Condition 
(1) for an element XE<*c to lie in a* is easy enough to deal with. If 
H=\—p this is the condition that fx and — p are W-conjugate. That 
is, writing M = Mi+̂ M2 where jui, MJEG' then condition (1) is that there 
should exist <rÇzW such that <r/ii= — Hi and <r/i2=M2. 

If condition (1) is satisfied for X£dc then as we noted above the 
matrix 2î*(X)=P*(-X+2p)*P*(X) is Hermitian for all yÇT (see 
Proposition 5). By Proposition 5 condition (2) is that the Her­
mitian matrix RyÇK) should be positive semidefinite for all Y ET. 

But now if X=p then Ry(p)=Py(p)*Py(p) and hence p£ct*. On 
the other hand, if XE<*c only satisfies condition (1) then any ele­
ment on the line segment\(t) = /X+(l—/)p also satisfies condition 
(1) and hence 2?Y(X(/)) is a continuous curve of Hermitian matrices. 
But now pECS, the critical strip, and if XECS (the closure of CS) 
thenX(J)£CS for all 0 5 ^ < 1 and hence, for such t,Ry(y(t)) is acurve 
of nonsingular Hermitian matrices. But ^ ( 7 ( 0 ) ) is positive definite 
and since the eigenvalues cannot change sign along X(/) for 0^t<l 
it follows that Ry(\) is positive semidefinite. Thus for elements 
XECS condition (1) is necessary and sufficient for X £ G * . That is, 
we have proved 

THEOREM 9. Let X be an arbitrary element in the closure of the critical 
strip (see §3). Then the irreducible V-module Zx corresponds to a 
(necessarily irreducible) unitary representation of G if and only if 
there exists a as in the Weyl group such that cr/xi = — Mi and ap.% =/x2 where 
Mi» A^Ea' and X— p=Mi+^M2. 

REMARK 8. To clarify the word "corresponds" one recalls that to 
any unitary representation of G on a Hilbert space 3C there is induced 
a [/-module structure on the space 3C00 of all C00 elements in 5C. We 
will say that a [/-module X corresponds to the given unitary repre­
sentation of G in case X is [/-equivalent to a [/-submodule Y of 3C00 
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where Y is dense in 3C. However, if 2P corresponds to the unitary G 
module 5C it follows easily from [2] that 

(1) the representation of G is irreducible, 
(2) all the elements of Y are well behaved and 
(3) Y is the set of all infinite vectors in 3C. 
7.3. Now among all the elements of CS which satisfy (condition (1) 

of §7.2) the condition of Theorem 9 there are two extreme types. 
That is, if X £ C S and X — p=M==Mi+^M2 then 

(a) if ix is pure imaginary, i.e. if Ati = 0, X automatically satisfies 
condition (1) and hence X=p+i/i2£ct*. Here, however, comparing 
with §2, TTX is just an element of the principal series (7rx is equivalent 
to Sn) and one obtains all the elements of the principal series this way. 

Next 
(b) if fx is real, i.e. ju2 = 0, then condition (1) of §7.2 reduces to the 

condition that /x and -~fx are W-conjugate. 
We will call the family of unitary representations TTX, where this 

condition holds, the complementary series since it is a natural gen­
eralization of such a designated series when G = S1(2, JR). In sum­
mary let CI (the critical interval) be the set of all X£a' such that 
<X-p, wjeT* for all 06AV where T+={tER\ \t\ <dim tf/2 if 
20GA and |t | <dim G*/2 + 1 if 20GA}. 

COROLLARY TO THEOREM 9. Let X£C7 then the irreducible U-
module Zx corresponds (see Remark 7) to a unitary representation of G 
(necessarily 7rx) if and only iffx and —fx are W-conjugate where fx =X —p. 

The family of unitary representations 7rx for such X is called the 
complementary series. 

REMARK 9. Note that if — 1G W then all the elements of CÏ satisfy 
the condition of the corollary above. 

In general we have not as yet been able to determine all the ele­
ments of a* lying outside of CS. 

For the split rank 1 case, however, a* can be completely deter­
mined giving therefore in that case the set of all irreducible unitary 
representations of G with a nonzero 2£-fixed vector. The point is that 
if dim a = l then by Theorem 6, Rv = ry and using Remark 5 it is 
easy to determine the set of all XGctc such that rY(X) ^ 0 for all 7 6 T . 
It turns out that except for X = 0 or 2p the most general such X lies in 
CS. But X satisfies condition (1) of §7.3 if and only if X—p is either 
real or pure imaginary. This proves 

THEOREM 10. Assume dim a = 1. Then except for possibly the identity 
representation (which may be a member of the complementary series) 
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every irreducible unitary representation of G with a nonzero K-fixed 
vector is either a member of the principal series or the complementary 
series. Furthermore {since — 1 £ W) the complementary series is defined 
foraU\ECÏ. 

REMARK 10. Note that Theorem 10 points up a single irreducible 
unitary representation, distinguished in the following sense: The 
complement of CI in CI consists of 2 points which are conjugate 
under W and hence this orbit defines a single irreducible unitary 
representation 7rx of G. In case dim g2a = 0, 1 (the orthogonal and 
unitary case), where (a)=A+, this representation is nothing more 
than the trivial one. However, if dim Q2a = 3, 7 (the symplectic and 
FA cases) this representation is not trivial and it is distinguished 
among all nontrivial irreducible unitary representations of G with a 
K'ûxed vector in that it is the only one such that the subspace of 
infinite vectors, Z \ is not [/-equivalent to the induced module X \ 
i.e. Xx is not [/-irreducible. 

One notes also that in the latter case and only in this case (dim g2a 

= 3, 7) the identity representation is not a member of the comple­
mentary series and, hence, is in fact isolated from all other unitary 
representations. This should perhaps be related with recent results 
of Kajdan. See [4]. 
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