A PROOF OF THE SLICING THEOREM FOR 2-SPHERES

BY NORMAN HOSAY

Communicated by R. H. Bing, April 16, 1968

1. Introduction. The purpose of this note is to answer in the affirmative the following question raised by Bing [3]: Is a 2-sphere S in Euclidean 3-space E³ tame if each horizontal cross-section of S is either a point or a simple closed curve? (I have been informed by R. H. Bing that W. T. Eaton has independently proved a similar theorem.)

If S is polyhedral that S is flat is well known. A proof is sketched in [1] and more detailed proofs are given in [5] and [6]. However, the more general assertion posed by the above question was placed in doubt by an example due to Bing. In [3, p. 362] a nonpolyhedral, tame 2-sphere is constructed which satisfies the above condition but cannot be taken onto a round sphere by a level preserving homeomorphism of E^3 .

The proof given here is not elementary in that it relies on two characterizations, due to Bing, [2] and [4], of tame 2-spheres in E^3 . More will be said about these results when they are used.

I would like to thank R. H. Bing and I. Ferris for helpful comments.

We assume the usual metric on E^3 throughout this paper and in order to simplify the notation we let

$$E_t = \{(x, y, z) \in E^{\mathfrak{d}} \mid z = t\}.$$

2. THEOREM. Let S^2 be a 2-sphere in E^3 and a < b real numbers such that for a < t < b, $S^2 \cap E_t = J_t$ is a simple closed curve and $S^2 \cap E_t = p_t$ is a point for t equal to a or b. Then S^2 is tame.

PROOF. We first prove that S^2 is locally tame modulo $\{p_a, p_b\}$ by showing that the complementary domains of S^2 are locally simply connected at each point $p \in S^2 - \{p_a, p_b\}$, [2]. The two extreme points will be dealt with in the last step of the proof.

Given $p \in S^2 - \{p_a, p_b\}$ let U be a round open ball containing p and small enough so that no J_t lies entirely in U. Further assume that U misses E_a and E_b . Choose V to be a round open ball containing p such that $V \subset U$ and $V \cap S^2$ lies in a disk in $U \cap S^2$. Let D be a 2-cell. We want to show that any map

$$f: \operatorname{Bd} D \to V - S^2$$

admits an extension

$$g: D \to U - S^2$$
.

We can assume that f(Bd D) is a polygonal simple closed curve such that no edge lies on a horizontal plane and that $f(Bd D) \subset Int S^2 \cap V$. Since V is simply connected there exists a piecewise linear map

$$\hat{h}: D \to V$$

such that

$$\hat{h} \mid_{\text{Bd }D} = f \text{ on Bd } D.$$

Let C be the component of $D - \hat{h}^{-1}(\hat{h}(D) \cap S^2)$ containing Bd D. Since $\hat{h}(D) \cap S^2$ lies in a disk in $U \cap S^2$ there exists a map

$$h: D \to U \cap Cl(Int S^2)$$

such that

$$h|_C = \hat{h}$$
 on C .

Also

$$h|_{\mathrm{Bd}\ D} = f$$
 on $\mathrm{Bd}\ D$.

Since h is piecewise linear on a closed neighborhood in D of Bd D, for a fixed value t, only finitely many components of the set $h^{-1}(h(D) \cap E_t)$ will have the property that each contains more than one point of Bd D. We call the components with this property $A_1^t, \dots, A_k^t(t)$.

The remainder of the proof of this part of the theorem is divided into four parts.

(A) In this part each set $h(A_t^t)$ is replaced by a certain singular finite graph. We begin by pushing J_t slightly into Int J_t on E_t . Since $S^2 \cap E_t = J_t$, a simple closed curve, there exists a homeomorphism

$$k: E_{\bullet} \to E_{\bullet}$$

such that

$$k \mid_{h(\mathrm{Bd}\ D)} \cap E_t = 1$$

and

$$k(h(D) \cap E_t) \subset U \cap \operatorname{Int} S^2 \cap E_t$$
.

Let $O_j \subset U \cap \text{Int } S^2 \cap E_t$ be a connected open set about $kh(A_j^t)$ $(j=1, \dots, k(t))$. Let p be some point in O_j . We join each point $q \in h(\text{Bd } D) \cap O_j$ to p by an arc $[pq] \subset O_j$ and take K_i^t to be the union

of the finite number of arcs in O_j obtained in this way. The arcs [pq] may intersect each other badly.

(B) We now select a finite number of planes E_{t_1}, \dots, E_{t_n} so as to satisfy a certain homotopy condition. Let $K^t = K_1^t \cup \cdots \cup K_{k(t)}^t$. For each t (a < t < b) let ϵ_t be a positive number such that $\epsilon_t < \rho(K^t, S^2)$ and $\epsilon_t < \rho(f(\text{Bd } D), S^2)$. Let $V_{t'}(K^t)$ be the vertical translate of K^t to the horizontal plane $E_{t'}$. Then $V_{t'}(K^t) \cap S^2 = \emptyset$ for $|t'-t| < \epsilon_t$.

Let e < f be real numbers such that $h(\operatorname{Bd} D) \subset \bigcup_{e \le t \le f} E_t$. We cover the interval [e, f] by open intervals $W_t = (t - \epsilon_t, t + \epsilon_t)$, $e \le t \le f$. Let W_{t_1}, \dots, W_{t_n} be a finite subcollection of the W_t covering [e, f] indexed so that $t_1 < t_2 < \dots < t_n$. Let t_i be a number in $W_{t_i} \cap W_{t_{i+1}}$. Then each map of a simple closed curve into

$$K^{t_i} \cup K^{t_{i+1}} \cup (h(\operatorname{Bd} D) \cap \bigcup_{t_i \leq t \leq t_{i+1}} E_i)$$

is homotopic to a map of the simple closed curve into $E_{t_i} \cap \text{Int } S^2 \cap U$. We now prove the following: given any map

$$d \colon \operatorname{Bd} D \to E_t^2 \cap \operatorname{Int} S^2 \cap U$$

there exists a map

$$\hat{d}: D \to E_t^2 \cap \operatorname{Int} S^2 \cap U$$

such that d is an extension of d.

Recall that $E_t \cap S^2 = J_t$, a simple closed curve. Let J'_t be a simple closed curve in Int J_t on E_t such that

- (i) $d(Bd D) \subset Int J'_{\iota}$
- (ii) $J_t' \cap U$ consists of a finite number of open arcs B_1, \dots, B_t . Since $U \cap E_t$ is a disk, the map d admits an extension $d': D \rightarrow U \cap E_t$. Let C be the component of $D (d')^{-1}(d'(D) \cap J_t')$ containing Bd D. Let F be a component of the boundary of C relative to D. The set d'(F) must lie in one of the arcs B_j . Therefore $d'|_C$ can be extended to map F and the components in Int D of D F into B_j . In this way, we extend $d'|_C$ to all of D and obtain the required extension

$$\hat{d}: D \to U \cap Cl(\operatorname{Int} J'_t) \subset U \cap E_t \cap \operatorname{Int} S^2.$$

Thus we have shown the following: each map of a simple closed curve into

$$K^{t_i} \cup K^{t_{i+1}} \cup (h(\operatorname{Bd} D) \cap \bigcup_{t_i \leq t \leq t_{i+1}} E_i)$$

is homotopic in $U \cap Int S^2$ to a constant map.

(C) Now consider the disjoint connected sets A_i^i in D each of

which contains at least two points of Bd D. Let O_j^i , $(i = t_1, \dots, t_n; j = 1, \dots, k(t_n))$ be a collection of disjoint open subsets of D such that $A_j^i \subset O_j^i$.

In each O_j^t choose a point $p \in O_j^t \cap \text{Int } D$. For each $q \in A_j^t \cap \text{Bd } D$ we take an arc [pq] in O_j^t such that $[pq] \cap [pq'] = p$ for $q' \neq q$ and $q, q' \in A_j^t \cap \text{Bd } D$. Assume also that $[pq] \cap \text{Bd } D = q$. Let L_j^t be the finite graph (a "spoke" with p as center) in O_j^t formed by the union of all such arcs in O_j^t .

(D) Let $L^i = L^i_1 \cup \cdots \cup L^i_{k(t)}$ for $t = t_1, \cdots, t_n$. Consider a component M of $D - \bigcup_{i=1}^n L^{i_i}$. The closure of M is a topological disk. We claim that the boundary of M in D must lie in $L^{i_i} \cup L^{i_{i+1}}$ for some $1 \le i \le n-1$. Consider t_a , t_b , t_c such that $1 \le a < b < c \le n$. Then $h^{-1}(h(D) \cap E_{i_b})$ separates any A^i_i $(i=1, \cdots, k(t_a))$ from any A^i_j , $(j=1, \cdots, k(t_c))$.

Now fix i and j. Since $A_i^{l_0}$ and $A_j^{l_0}$ are connected sets and contain points of Bd D some component of $h^{-1}(h(D) \cap E_{l_0})$ containing at least two points of Bd D must separate $A_i^{l_0}$ from $A_j^{l_0}$. But such a component is one of the sets $A_m^{l_0}$, $(1 \le m \le k(l_0))$. Therefore $L_m^{l_0}$ separates $L_i^{l_0}$ from $L_j^{l_0}$ in D and our claim is verified.

We now extend f to a map f_1 such that

$$f_1: L_i^t \to K_i^t; \qquad (t = t_1, \dots, t_n; i = 1, \dots, k(t_n)).$$

Again let M be a component of $D-U_{i-1}L^{i}$. Then

$$f_1(\operatorname{Bd}\ M) \subset K^{t_i} \cup K^{t_{i+1}} \cup (f(\operatorname{Bd}\ D) \cap \bigcup_{t_i \le t \le t_{i+1}} E_i)$$

for some *i*. Thus, by part (B), f_1 can be extended to map M into $U \cap \text{Int } S^2$. By extending f_1 over all such components M we obtain a map

$$g: D \to U \cap \operatorname{Int} S^2$$

such that

$$g|_{\mathrm{Bd}\ D}=f$$
 on $\mathrm{Bd}\ D$.

This completes the proof that $S^2 - \{p_a, p_b\}$ is locally tame.

(E). We finish the proof of the theorem by showing that S^2 can be homeomorphically approximated by 2-spheres from either complementary domain and is therefore tame, [4]. Let $\epsilon > 0$ be given. We first consider the problem of approximating from the exterior of S^2 . Choose U to be a round open ball about p_b of diameter less than $\epsilon/2$. Choose t' such that $J_t \subset U$ for $t' \leq t < b$. On $E_{t'}$, the simple closed curves J_{t_0} and Bd $U \cap E_{t'}$ bound an annulus A. We now discard that

part of S^2 lying above $E_{t'}$ and add to remainder of S^2 the annulus A plus the portion of Bd U lying above $E_{t'}$. By performing a similar modification about p_a we obtain a 2-sphere \hat{S}^2 such that

$$\{p_a, p_b\}\subset Int \hat{S}^2 \text{ and } S^2\subset Cl(Int \hat{S}^2).$$

Further \hat{S}^2 is tame as it is locally tame modulo two tame simple closed curves. Thus by pushing \hat{S}^2 slightly into its exterior we obtain the desired ϵ -approximation.

The interior approximation is even easier. We choose curves J_{t_1} and J_{i_2} sufficiently close to p_a and p_b respectively, throw away the parts of S^2 lying below E_{t_1} and above E_{t_2} , add Int J_{t_1} and Int J_{t_2} and then push our modified tame sphere slightly into its interior.

REFERENCES

- 1. J. W. Alexander, On the subdivision of 3-space by a polyhedron, Proc. Nat. Acad. Sci. U.S.A. 10 (1924), 6-8.
- 2. R. H. Bing, A surface is tame if its complement is 1-ULC, Trans. Amer. Math. Soc. 101 (1961), 294-304.
- Spheres in E³, Amer. Math. Monthly 71 (1964), 353-364.
 Conditions under which a surface in E³ is tame, Fund. Math. 47 (1959),
- 5. W. Greub, Die semilinearen Abbildungen, S.-B. Heidelberger Akad. Wiss. Math.-Nat. Kl. 1950, 205-272.
- 6. E. E. Moise, Affine structures in 3-manifolds. II: Positional properties of 2spheres, Ann. of Math. (2) 55 (1952), 172-176.

University of Washington, Seattle, Washington 98105