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Introduction. A duality theory for linear programming over closed 
convex cones is developed by using the solvability theorem of [ l ] . A 
complete classification of all duality states is given, which includes 
Duffin's duality theorem (1 of [3]), together with asymptotic refine­
ments. For convenience, our results are stated in Rn, but extensions 
to more general spaces considered in [l ] are possible. Complete proofs 
of all results will be given elsewhere. The main ingredients of the 
duality theory over closed convex cones are essentially due to Duffin 
as set forth in his fundamental paper [3]; see also Kretschmer [5]. 

0. Notations and preliminaries. C—a closed convex cone in Rn
t 

C*={yERn:x£C=*(y, x)^0}. 

For the system 

(1) Ax = b xEC 

with given AE;RmXn, bÇzRm let 

F(l) = {xEC:Ax = b}, 

AF(l)=[{xk:k = l, 2, • • • }:x*GC, limk Axk = b}. 

AF(1) is a set of sequences. If F(l)j*0 then it can be imbedded 
naturally in AF(1). 

DEFINITION. (1) is 

CONS (consistent) if F (1 )?*0 , 
INC (inconsistent) if F(1) = 0, 
AC (asymptot. consist.) if AF{\)^0f 

SINC (strongly inconsist.) if AF(1)=0. 
We use the following 

1 This research was partly supported by the National Science Foundation, Proj­
ect GP 7550, and by the Office of Naval Research, Contract 1228(10) No 14-67-A-
0356-0006, and by the U. S. Army Research Office—Durham, Contract No. DA-31-
124-ARO-D-322, at Northwestern University and National Science Foundation 
Grant NSF-GP 2729 at Cornell University. Reproduction of this paper in whole or in 
part is permitted for any purpose of the United States Government. 
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SOLVABILITY THEOREM ( [ l , p. 543]). The following are equivalent: 
(i) Ax = b, xEC is AC, 
(ii) A*yEC*=*(p9 y)^0. 

Consider now the pair of problems 
(I.C) sup(c, x) subject to Ax = b, #£(7 , 
(II.C*) inf(6, y) subject to A'y-cEC* 

with given AERmXn* 6£ i? w , cERn and the associated systems 

(1) Ax = b, xEC, 

(2) 

( y\eRmxc*. 

DEFINITION.* (i) (I.C) [(II.C*)] is CONS, INC, AC or SINC if 
so is (1) [(2)]. 

(ii) Let (1)[(2)] be AC. Then (I.C) [(II.C*)] is PAC (properly 
AC) if l{xk}EAF(l)3limk sup (c, xk)> - °o [{(yk, zk)}GAF(2) 
3 linn inf(è, yk) < oo ] ; otherwise it is IAC (improperly AC). 

(iii) Let (I.C) [(II.C*)] be CONS. Then it is BD (bounded) if 
sup{(c, x):xEF(l)}<<x>[mi{(b, y): (y, z)EF(2)} > - oo ]. Other­
wise it is UBD (unbounded). 

(iv) Let (I.C) [(II.C*)] be PAC. Then it is ABD (asymptotically 
BD) if sup{limjfc sup(c, xk): {xk}EAF(l)} <*> 

[inf {lim* inf (Ö, yk):{yk, zk} G ^ ( 2 ) } > - oo]. 

Otherwise it is AUBD (asymptotically UBD). 

1. The duality states. Of the 49 mutually exclusive and collectively 
exhaustive states for problems (I.C) and (II.C*) only 10 are possible, 
and are those denoted in the table below by positive integers. A zero 
in the table means that the corresponding state is impossible. This 
classification constitutes our theorem, whose proof is given in two 
parts. Part 1 proves the possible states by examples so numbered 
that the possibility of each state is demonstrated by the example 
bearing the same number. Part 2 excludes the impossible states by a 
series of lemmas. 

1 In order to refine and extend the original cases developed by Duffin [3], we take 
the liberty of deviating from his terminology. 
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PROOF. Part 1. The possible states: 
Let C be the cone in i?3 of all vectors forming an angle g 45° with 

the vector (1, 0, 1). Then C= C*. In all 10 examples below we use this 
C and one of the following matrices 

/0 1 0\ 

for A. 
Example 1. i4=i4x, 6 = (0, 1), c = (0, 0, 1), 
Example 2. 4 =^x, & = (1, 0), c = (0, 0, 0), 
Example 3 . 4= ; l i f 6 = (1, 0), c = ( - l , 0, 0), 
Example 4. i4=4 2 , 6 = ( - l ) , c « ( —1, 0, 0), 
Example 5. A=A2, & = (0), c = (0, —1, 0), 
Example 6. A=A2f i = ( - l ) , c = (0, 1, 0), 
Example 7. i4=i42, 6 = (1), c = (0, 1, 0), 
Example 8. i4=4 2 , 6 = (1), c = (l, 0, 0), 

file:///SINC
file:///siNC
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Example 9. A=AU è = (l, O), c = (l, 0, 0), 
Example 10. A=A2, & = ( - l ) , c = (l, 0, 0). 
Part 2. The impossible states: 

LEMMA 1. (I.C) AC and (ILC*) CONS=* 

(3) sup{Kmsup(c,^):{a*}eilF(l)} ^ inf {(J,y):(y,«) G F(2)}. 

Moreover if (ILC*) is also BD then 3 a sequence {#*} GAF{\)3 

(4) lim sup (*, **) - inf {(b, y) : (y, s) G F(2)}. 

PROOF. TO prove (3) let {xk}EAF(l) and A<y-c=zEC*. Then 

(J, y) = lim (^4 ,̂ y) = lim (xk, A 'y) = lim (xkf c + z) 
k t I 

= lim sup (xk, c+z) 
t 

è lim sup {xk, c) since «iGC,2G C*, 

which proves (3). 
To prove the existence of a maximizing sequence 

(5) /8- inf {(J,y):(y,*)eF(2)}. 

Since (II.C*) is BD it follows that 

M' - / 
(o i o]( z Je{o} XC*XR+ 
\0 0 1 /V, . / 

•60" 
For if zn+i>0 then by setting zn+i*=l (6) follows from the definition 
(5) of j8. If on the other hand 3n+i = 0 and (6) is false, i.e. 3(y°, z°)3 

- (0'0)<o-0 ) G {0} X C* X R+, 

then for any (y, z)E-F(2) we take (y*, z*) = (y, z)+*Cy°, z°), fc = l, 
2, • • • and verify that 

(y*,**)eF(2) V*. 
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But (&, y*)—>— oo, which contradicts (II.C*) BD. Finally (6) is 
equivalent to 

id ! -TO 
being AC, which proves the existence of {#*} E.AF(2) satisfying (4) .n 

LEMMA 2. (I.C) CONS and (II.C*) 

AC =s> sup {(c, x) : x E F(X)} ^ inf {lim inf (*, y*) : {?*, 2*} G 4F(2)} . 

Moreover if (I.C) is a/so 2?£> /&£# 3 a sequence 

{yk,zk} E AF(2) 3 sup { (* ,* ) : *£ F(l)} = liminf (b,yk). 
k 

LEMMA 3. (I.C) PAC and ABD=*(1I.C*) CONS and BD. 

LEMMA 4. (II.C*) PAC and ABD=*(I.C) CONS and BD. 

LEMMA 5. One of the problems (I.C) and (II.C*) is CONS and ABD 
iff so is the other, in which case 

sup {Kmsup (*,**):{**} E AF(1)} = inf {(b,y):(y,z) G F(2)} 
(7) * 

^ inf {liminf (b,yk):{yk,zk} G i4F(2)} = sup {(c,x):xEF(l)}. 
k 

LEMMA 6. (I.C) IAC=*(II.C*) CONS and UBD. 

PROOF. We prove first that (I.C) IAO»(II .C*) CONS. Assume 
to the contrary that (II.C*) is INC. Then for any r > 0 

By the solvability theorem this is equivalent to 

™ (_^)-(_°f)' «ec 

being AC. 
Let now {xk}ÇzAF(l) and 

r* = |fo**)| * = 1,2, • • • . 

For each & let |«*y} EAF(8.r*) of which we choose an element 
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satisfying 

fkAukjik) 

(C, Ukj(k)) <T>' i*-1*2' 

The sequence 

\Vk] = xk + rk- -> k = 1,2, • • • , 
(C, Ukj(Jc)) 

satisfies 

{**} e i iF( i ) 

but 

fo Vk) = (c, #*) + |(c, Xk) I è 0 

contradicting (I.C) IAC. Finally (II.C*) is UBD. For if it is BD then 
by Lemma 1 (I.C) cannot be IAC. • 

LEMMA 7. (II.C*) IAC=*(I.C) CONS and UBD. 

The zero-numbered states in the above table are excluded by 
applying Lemmas 1-7. This completes the proof of the theorem. • 

2. Remarks, (i) If the cone C (hence C*) is polyhedral then 
F(1)=AF(1) and F(2)=AF(2) so that both problems (I.C) and 
(II.C*) are either CONS or SINC. Only the 4 states, nos. 1, 4, 8 and 
10, are then possible. For C polyhedral our results thus give (an 
alternate proof of) the duality theorem of linear programming, e.g. 
[4], [2]. 

(ii) The following simple example shows the possibility of arbitrary 
nonnegative values for the difference between the sides of inequality 
(7) in Lemma 5. 

Let C= C* be the cone given in Part 1 of the proof and let 

For any o^O, 

C = CXR+ = 

let the problem (I.C) be 

maximize —• #2 

s.t. xt 

Xt 

(xi, xty xZy xA) G C. 

C*. 

given 

— Xi 

as 

= 0 

= a 
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The problem (II.C*) is 

minimize ay% 

s.t. (0,1 + y2, yu — y2) G C. 

Both problems are CONS and ABD. Furthermore 

sup {lim sup (c, **):{**} G AF(1)} = inf {(6, y) : (y, z) G F(2)} = - a 

and 

sup {(*, * ) : * G F(l)} = inf {lim inf {(b, yk): {yk, zk] G AF(2)}} = 0. 

The difference in (7) is thus —a. 
(iii) Lemmas 1, 2 and 5 reprove Duffin's duality theorem (1 

of [3]). 
(iv) The above results show that if both problems (I.C) and 

(II.C*) are INC, then at least one of them is SINC. It is thus im­
possible for both problems to be AC but INC. 
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