AN ALGEBRA OF SINGULAR INTEGRAL OPERATORS WITH TWO SYMBOL HOMOMORPHISMS

BY H. O. CORDES1

Communicated by M. H. Protter, May 28, 1968

1. Let $R_+^{n+1} = \{(x, y) = (x_1, \dots, x_n, y) : x_j, y \in \mathbb{R}, y \geq 0\}$ and let Δ_d , Δ_n denote the two unbounded positive self-adjoint operators of the Hilbert-space $\mathfrak{H} = \mathfrak{L}^2(\mathbb{R}_+^{n+1})$ generated by closing the Laplace operator in $C_0^{\infty}(\mathbb{R}_+^{n+1})$ under Dirichlet and Neumann boundary conditions at y = 0, respectively.

We propose to study the "convolution algebra" \mathfrak{A}^{\sharp} generated by the generalized Riesz-Hilbert-operators

$$\Lambda_{d} = (1 - \Delta_{d})^{-1/2}, \quad \Lambda_{n} = (1 - \Delta_{n})^{-1/2}, \quad S_{d} = -i\partial/\partial y \Lambda_{d},$$

$$(1) \quad S_{n} = -i\partial/\partial y \Lambda_{n}, \quad S_{d,j} = -i\partial/\partial x_{j} \Lambda_{d}, \quad S_{n,j} = -i\partial/\partial x_{j} \Lambda_{n},$$

$$j = 1, \dots, n$$

and later on also will adjoin certain multiplications by continuous functions, to obtain an algebra \mathfrak{A} of singular integral operators on the half-space \mathbb{R}^{n+1}_+ .

Both C^* -algebras $\mathfrak{A}^{\#}$ and \mathfrak{A} have noncompact commutators, but each is commutative modulo a certain larger ideal ($\mathfrak{S}^{\#}$ and \mathfrak{S} , respectively). We therefore obtain a first symbol function σ_A for $A \subset \mathfrak{A}^{\#}$ (or \mathfrak{A}) which is a continuous complex-valued function over the maximal ideal space of $\mathfrak{A}^{\#}/\mathfrak{S}^{\#}$ (or $\mathfrak{A}/\mathfrak{S}$). If σ_A does not vanish, we can invert the operator mod $\mathfrak{S}^{\#}$ (or \mathfrak{S}), or reduce the singular integral equation $A_n u = f$ to an equation (1+E)u = g with $E \subset \mathfrak{S}^{\#}$ (or \mathfrak{S}).

Now, we find that the ideals \mathfrak{E}^* and \mathfrak{E} are isomorphic to topological tensor products of the form $\mathfrak{E}(\mathfrak{h}) \, \hat{\otimes} \, \mathfrak{S}^*$, $\mathfrak{E} = \mathfrak{E}(\mathfrak{h}) \, \hat{\otimes} \, \mathfrak{S}$, with respect to a suitable direct decomposition

$$\mathfrak{H} = \mathfrak{h} \otimes \mathfrak{k}, \qquad \mathfrak{h} = \mathfrak{L}^2(\mathbb{R}^+), \qquad \mathfrak{k} = \mathfrak{L}^2(\mathbb{R}^n),$$

where $\mathfrak{C}(\mathfrak{h})$ denotes the compact ideal of \mathfrak{h} , while \mathfrak{S}^f and \mathfrak{S} are certain algebras of singular integral operators over the boundary \mathbb{R}^{n+1} .

Therefore to each operator $E \in \mathfrak{F}$ (or \mathfrak{E}) there can be associated an operator valued symbol $\tau_E(m) \in \mathfrak{E}(\mathfrak{h})$ such that 1+E is Fredholm if and only if $1+\tau_E(m)$ is regular for all m. The construction of a Fredholm inverse for $A \in \mathfrak{A}$ will therefore depend on two symbols: first we invert the operator modulo \mathfrak{E} , if the complex-valued symbol

¹ Supported by contract AF-AFOSR 553-64.

 σ_A does not vanish; then we invert an operator $1+E \mod \mathfrak{C}$, which depends on another, operator-valued symbol.

2. It is well known that the operators (1) have representations as (regular or singular) integral operators. Specifically

$$\Lambda_d = \Lambda_- - \Lambda_+, \qquad \Lambda_n = \Lambda_- + \Lambda_+$$

with

(2)
$$\Lambda_{\pm} u = (2/\pi)^{1/2} (2\pi)^{-(n+1)/2} \int_{R_{+}^{n+1}} K_{n/2}(t_{\pm}) t_{\pm}^{-n/2} u(x', y') dx' dy'$$

and

(3)
$$t_{\pm} = (|x - x'|^2 + |y \pm y'|^2)^{1/2},$$

where $K_r(s)$ denotes the modified Bessel function as in Magnus-Oberhettinger [6, p. 28]. All other operators (1) experience similar decompositions and we therefore may generate \mathfrak{A}^* by the following operators as well, which are integral operators:

(4)
$$\Lambda_{\pm}, S_{\pm} = -i\partial/\partial y \Lambda_{\pm}, S_{j,\pm} = -i\partial/\partial x_j \Lambda_{\pm}, j = 1, \dots, n.$$

Note that

(5)
$$S_{\pm}u = i(2/\pi)^{1/2} (2\pi)^{-(n+1)/2} \cdot \int_{\mathbb{R}^{n+1}} K_{n/2+1}(t_{\pm})(y \pm y')/t_{\pm}^{n/2+1} u(x', y') dx' dy'$$

and

$$S_{j,\pm}u = i(2/\pi)^{1/2} (2\pi)^{-(n+1)/2}$$

$$\cdot \int_{R_{+}^{n+1}} K_{n/2+1}(t_{\pm})(x_{j} - x_{j}') / t_{\pm}^{n/2+1} u(x', y') dx' dy'.$$

3. Let F denote the unitary operator of \mathfrak{F} induced by the Fourier transform, with respect to the x-variable only:

(7)
$$Fu(x, y) = (2\pi)^{-n/2} \int_{\mathbb{R}^n} e^{-ix \cdot \xi} u(\xi, y) d\xi \quad \text{for } u \in C_0^{\infty}(\mathbb{R}^{n+1}_+)$$

and let the unitary operator T be defined by

(8)
$$(Tu)(x, y) = \sigma^{-1/2}u(x, y/\sigma), \qquad (T^{-1}u)(x, y) = \sigma^{1/2}u(x, y\sigma)$$

with $\sigma = (1 + |x|^2)^{1/2}$. Let U = TF; then we find that

(9)
$$US_{\pm}U^{-1} = P_{\pm}$$
, $US_{j,\pm}U^{-1} = x_j/\sigma Q_{\pm}$, $U\Lambda_{\pm}U^{-1} = 1/\sigma Q_{\pm}$

with

(10)
$$P_{\pm}u = i/\pi \int_{0}^{\infty} K_{1}(|y \pm y'|) \operatorname{sgn}(y \pm y') u(x, y') dy'$$

and

(11)
$$Q_{\pm}u = 1/\pi \int_0^{\infty} K_0(|y \pm y'|) u(x, y') dy',$$

with sgn $t=0, \pm 1$ if t=0, >0, <0, resp.

Let $h = \mathcal{L}^2(R_+^1)$ and, for a moment, let D_d and D_n denote the operators Δ_d and Δ_n as introduced initially, but for n=0. Then we see at once that we may reinterpret P_{\pm} , Q_{\pm} above as operators on h and that then

(12)
$$(1 - D_d)^{-1/2} = Q_- - Q_+, \qquad (1 - D_n)^{-1/2} = Q_- + Q_+, \\ -i\partial/\partial y (1 - D_d)^{-1/2} = P_- - P_+, \qquad -i\partial/\partial y (1 - D_n)^{-1/2} = P_- + P_+,$$

while we get

(13)
$$\mathfrak{H} = \mathfrak{k} \, \hat{\mathbb{S}} \, \mathfrak{h}, \qquad \mathfrak{k} = \mathfrak{L}^2(\mathbb{R}^n)$$

and the relations (9) take the form

(14)
$$US_{\pm}U^{-1} = I \otimes P_{\pm}, \qquad US_{j,\pm}U^{-1} = (x_{j}/\sigma) \otimes Q_{\pm},$$
$$U\Lambda_{\pm}U^{-1} = (1/\sigma) \otimes Q_{\pm}.$$

In (13) ô denotes the topological tensor product.

4. We notice that the operators P_{\pm} , Q_{\pm} of §1 are evidently in the algebra \mathfrak{F} as introduced in [4, §5]. In particular, Q_{+} is a compact operator of \mathfrak{h} , Q_{-} is an even Wiener-Hopf convolution with \mathfrak{L}^{1} -kernel, and P_{\pm} differ from cK_{\pm}^{0} , with the operators K_{\pm}^{0} as in [4] and a suitable constant c, only by a compact operator each. It is also easily seen that \mathfrak{F} may be generated as a C^{*} -algebra with unit by $\mathfrak{C}(\mathfrak{h})$, P_{\pm} , Q_{\pm} as well as by the generators listed in [4].

DEFINITION. (a) \mathfrak{G}^{\sharp} denotes the C^{*} -subalgebra of $\mathfrak{L}(\mathfrak{H})$ without unit generated by the operators of the form

$$(15) U^*(a(x) \otimes C)U$$

with $a(x) \in \mathfrak{C}(B^n)$, $C \in \mathfrak{C}(\mathfrak{h})$.

(b) \mathfrak{A}^{\sharp} denotes the C^* -algebra with unit generated by \mathfrak{S}^{\sharp} above and all operators S_{\pm} , $S_{j,\pm}$, Λ_{\pm} , $j=1, \cdots, n$.

Note. As in [5] B^n denotes the smallest compactification of R^n into which the mapping $\rho: R^n \to \{|x| < 1\}$ defined by

(16)
$$\rho(x) = (2/\pi)x/|x| \arctan |x|, \quad x \neq 0, = 0 \text{ for } x = 0$$
 can be continuously extended.

We then have

THEOREM 1. \mathfrak{E}^{\sharp} is a closed two-sided ideal of the C^* -algebra \mathfrak{A}^{\sharp} . The algebra $\mathfrak{A}^{\sharp}/\mathfrak{E}^{\sharp}$ is commutative and isometrically isomorphic to the function algebra $\mathfrak{C}(\mathfrak{M}^{\sharp})$ with the compact Hausdorff space \mathfrak{M}^{\sharp} obtained from the product $B^n \times \mathfrak{M}(\mathfrak{F})$ by identifying all points of B^n over each point of the straight line segment $x=0, -\infty < t < +\infty, \xi = \infty$ in the space $\mathfrak{M}(\mathfrak{F})$ as defined in $[4, \S 5]$.

Clearly \mathfrak{G}^{\sharp} does not contain compact operators, except 0. On the other hand, \mathfrak{G}^{\sharp} is contained in the R-algebra $U^{*}(\mathfrak{G}(\mathfrak{k}) \otimes \mathfrak{L}(\mathfrak{h})) U = \mathfrak{J}$ and Theorem 1 relates the \mathfrak{J} -Fredholm property of $A \in \mathfrak{A}^{\sharp}$ to the non-vanishing of a continuous function over \mathfrak{M}^{\sharp} . (See [2], [3].)

Note that M^{\sharp} is homeomorphic to an n+1-ball B^{n+1} with the endpoints of a one-dimensional interval I^{1} attached to it at two distinguished points.

5. Let H^{n+1} denote the closure of R^{n+1}_+ in B^{n+1} . It then is an easy consequence of results published in [5] that the commutators $[S_{\pm}, b], [S_{j,\pm}, b], [\Lambda_{\pm}, b], j=1, \cdots, n$ are all in $\mathbb{C}(\mathfrak{S})$, for $b \in \mathfrak{C}(H^{n+1})$.

DEFINITION. (a) \mathfrak{E} denotes the C^* -algebra without unit generated by $\mathfrak{E}(\mathfrak{H})$ and all products bE, Eb, $b\in C(H^{n+1})$, $E\in \mathfrak{F}$.

(b) \mathfrak{A} denotes the C^* -algebra with unit generated by $\mathfrak{C}(\mathfrak{H})$, \mathfrak{A}^* and $C(H^{n+1})$.

We then have the following main result.

THEOREM 2. (a) $\mathbb{C} \mathbb{Q}$ is a closed two-sided ideal of \mathbb{Q} , and \mathbb{Q}/\mathbb{C} is commutative.

- (b) $\mathbb{C} = \mathbb{C}(\mathfrak{H})$ is a closed two-sided ideal of E.
- (c) The Gelfand space \mathfrak{M} of $\mathfrak{A}/\mathfrak{E}$ is (homeomorphic to) the following subset of the cartesian product $\mathfrak{M}^{\sharp} \times H^{n+1}$ (\mathfrak{M}^{\sharp} as in Theorem 1):
- (i) Over the boundary at $y = \infty$ of H^{n+1} one gets all points of $B^{n+1} \subset \mathfrak{M}^t$.
- (ii) Over interior points of $R_+^{n+1} \subset H^{n+1}$ one gets the boundary ∂B^{n+1} of the ball $B^{n+1} \subset \mathfrak{M}^t$.
- (iii) Over the boundary y = 0 of $R_+^{n+1} \subset H^{n+1}$ one gets the interval I^1 and the boundary ∂B^{n+1} of the ball $B^{n+1} \subset H^{n+1}$.

- (iv) Over the points y = 0, $|x| = \infty$ of H^{n+1} one gets the whole space \mathfrak{M}^{t} .
- (d) The algebra $\mathfrak{E}/\mathfrak{E}$ is isometrically isomorphic to the algebra $\mathfrak{E}(\mathfrak{M}_1,\mathfrak{E}(\mathfrak{h}))$ of all continuous functions from a compact Hausdorff-space \mathfrak{M}_1 to the compact ideal $\mathfrak{E}(\mathfrak{h})$ of the Hilbert-space \mathfrak{h} .
 - (e) The space \mathfrak{M}_1 is (homeomorphic to) the set

$$\partial B^n \times B^n \cup B^n \times \partial B^n \subset B^n \times B^n,$$

(i.e., topologically is a 2n-1 sphere).

DEFINITION. (a) To any $A \in \mathfrak{A}$ we associate $\sigma_A \in \mathfrak{C}(\mathfrak{M})$ defined as the function associated to the coset of A mod \mathfrak{E} by the Gelfand isomorphism of $\mathfrak{A}/\mathfrak{E}$. σ_A will be called the \mathfrak{E} -symbol of $A \in \mathfrak{A}$.

(b) To any $E \subset \mathfrak{F}$ we associate $\tau_E \subset \mathfrak{C}(\mathfrak{M}_1, \mathfrak{C}(\mathfrak{h}))$ defined as image of the coset of $E \mod \mathfrak{C}(\mathfrak{H})$ under the isomorphism (d) of Theorem 2. τ_E will be called the \mathfrak{C} -symbol of $E \subset \mathfrak{F}$.

THEOREM 3. (a) A necessary condition for $A \subseteq \mathfrak{A}$ to be Fredholm is that its \mathfrak{E} -symbol does never vanish on \mathfrak{M} .

- (b) $A \in \mathbb{X}$ with $\sigma_A \neq 0$ on \mathfrak{M} possesses an inverse $B \in \mathbb{X}$ mod \mathfrak{E} such that 1 AB, $1 BA \in \mathfrak{E}$.
- (c) $A \in \mathfrak{A}$ with $\sigma_A \neq 0$ is Fredholm if and only if for some \mathfrak{E} -inverse B of A we have

$$(1 + \tau_{(AB-1)}(m))$$
 a regular operator of $\mathfrak{L}(\mathfrak{h})$

for all $m \in \mathfrak{M}_1$.

6. The proof of Theorem 2 rests on the following facts partly of independent interest.

THEOREM 4. If $b \in C(\mathbf{H}^{n+1})$ vanishes on the boundary y = 0 then Eb, bE are compact, for all $E \in \mathfrak{G}^{t}$.

The result of Theorem 4 may be expressed by saying that all operators of \mathfrak{E} are "compact, except over the boundary of \mathbb{R}^{n+1} ."

THEOREM 5. We have $U \mathfrak{C} U^* = \mathfrak{S} \hat{\otimes} \mathfrak{C}(\mathfrak{h})$ with the algebra \mathfrak{S} as in [5, appendix].

This completely clarifies the structure of the ideal & and assertions (d) and (e) of Theorem 2 become evident, in view of [5] and [1].

While the proof of assertions (a) and (b) is a verification only, one may employ techniques as in [5] to obtain the precise extent of the space \mathfrak{M} .

We notice that the operators of our algebra $\mathfrak A$ are similar to those considered by Vishik and Eskin [7], for instance.

Applicability of our results should strongly depend on the explicit construction of inverses mod & and of Fredholm inverses.

Especially we also expect results concerning pseudo-differential operators involving boundary conditions in a half-space like those in [4, §6].

REFERENCES

- 1. M. Breuer and H. O. Cordes, On Banach algebras with σ -symbol, Part II, J. Math. Mech. 14 (1965), 299-314.
 - 2. H. O. Cordes, On a class of C*-algebras, Math. Ann. 170 (1967), 283-313.
- 3. ——, Über eine nichtalgebraische Characterisierung von J-Fredholmoperatoren, Math. Ann. 163 (1966), 212-229.
 - 4. ——, Pseudo-differential operators on half-line, J. Math. Mech. (to appear).
- 5. H. O. Cordes and E. Herman, Remarks on the Gel'fand theory of pseudo-differential operators, Amer. J. Math. (to appear).
- 6. W. Magnus and F. Oberhettinger, Formeln und Sätze für die speziellen Funktionen der Mathematischen Physik, Springer, Berlin, 1948.
- 7. M. I. Vishik and G. I. Eskin, Equations in convolutions in a bounded domain, Uspehi Mat. Nauk 20 (1965), 90-152=Russian Math. Surveys 20 (1965), 85-151.

University of California, Berkeley, California 94720