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1. We study ü-spaces which are connected finite complexes, with 
H*(X, Z) free of 2-torsion, by considering the complex K-theory of 
their projective planes. In particular we show that no 7 sphere-bundle 
over an 11 or 15 sphere can be an iJ-space,1 and that a homotopy 
associative, homotopy commutative i?-space must have the homo­
topy type of a torus. 

2. Let X be an ü-space as above, then H*(X, Q) is an exterior 
algebra on odd dimensional generators, and we assume that the Hopf 
algebra structure, with comultiplication induced by the üf-space 
map, is primitively generated. The number of generators we call the 
rank of X and the dimensions in which they occur, the type of X. 

THEOREM 1. Let H*(X, Q) have not more than one generator in any 
one dimension, then 

(i) If the rank of X is 1, its type is 1, 3 or 7. 
(ii) If the rank of X is 2, its type is (1, 3) (1, 7) (3, 5) or (3, 7). 
(iii) If the type of X contains 4m — 1 , with m not divisible by 4, then 

its type contains 4g — 1, for all q with 2 g g g m , 
(iv) If the type of X contains 2m — 1, with m odd, then it contains 

2q — l,for allqwith 2 ^ g g w . 

Part (i) is well known. It was first proved in [3] and we have 
generalized the proof of [5]. Part (ii) answers questions raised in [4] 
and [8]. I t was the solution of this problem that led to the rest of this 
work. In general, if you specify the number of generators, better 
results can be obtained by applying the methods of this paper rather 
than the results. 

3. Let X be a noncontractible connected finite complex which is a 
homotopy commutative iî-space, then Ü* (X, Z) is free of 2-torsion 
by Theorem 8.5 of [7]. 

THEOREM 2. Let X be a homotopy associative, homotopy commutative 
H-space, then X has the homotopy type of a torus. 

1 Added in proof. Dr. R. Douglas and Dr. F. Sigrist have recently announced their 
independent proof of this result. 
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This is not the strongest result which we can prove. We may elimi­
nate the condition of homotopy associativity, using recent work of 
James, but for technical reasons we have to use methods other than 
those outlined here. 

4. We develop a simple axiomatic theory for dealing with these and 
similar questions, motivated by complex i£-theory. We sketch this 
briefly in the case of the prime 2, and write Q2 for the subring of 
rationals with odd denominators. 

Let M be a finitely generated Ç2-module which is also a commuta­
tive filtered ring, whose associated graded ring is torsion free. We 
suppose that we have filtration preserving ring homomorphisms 
tyk: M-+M, for each k, with ^*^«»=>£«¥* and ty*(x)=*x* mod 2, 
which correspond to the Adams operators of [2]. We also assume an 
integrality condition, motivated by the Integrality Theorem on the 
Chern character of [ l ] . 

Since N, the associated graded ring is torsion free, N and M are 
isomorphic as filtered (?2-modules, and we take a particular choice for 
this isomorphism, J: N-+M say. Using the tyk

t we define homomor­
phisms Sj: Nn—*Nn+r, which behave something like the Steenrod 
squares in cohomology. They satisfy certain Adem-type relations, 
but not just mod 2, in general mod 2n for all n. We also have general­
ized Cartan formulae, in particular if J is a ring isomorphism, we 
have a Q2 Cartan formula* 

Let N be a truncated polynomial algebra of height 3 on generators 
no two of which have the same dimension. Our main result is, 

THEOREM 3. 

(i) If N has one generator, then it has dimension 1,2 or 4. 
(ii) If N has two generators, then they have dimensions (1, 2) (1, 4), 

(2, 3), or (2, 4). 
(iii) If N has a generator of dimension 2m, with m not divisible by 4, 

then it has generators of dimension 2qfor all q with 2 S q Û w>. 
(iv) If N has a generator of dimension 2m — 1, then it has generators 

of all dimensions less than 2m —\ and greater than 1. 

In a large number of cases (iii) can be strengthened to show that 
there are always generators of dimension 2g for 1 èq^m, but we have 
not been able to prove this in general. 

5. Our application is to take M « K{X), complex K-theory with 
(^-coefficients and the CW-filtration. N is then H*yen(X, Q%), since 
H*(X, Z) is free of 2-torsion. 

In particular with the conditions of §2, if we take M~K(P*X), 
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where P2X is the projective plane of X, Theorem 1 follows from 
Theorem 3. 

The proof of Theorem 2 is quite simple using the results of §4. We 
show that the iJ-squaring map is not an iJ-map unless all generators 
of H*(X, Q) have dimension 1, once more using the projective plane 
of an if-space. 
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