
A COMPLETE ELEMENTARY PROOF THAT HILBERT 
SPACE IS HOMEOMORPHIC TO THE COUNTABLE 

INFINITE PRODUCT OF LINES1 

BY R. D. ANDERSON AND R. H. BING 

1. Introduction. In this paper we give a complete and self-contained 
proof that real Hubert space, k, is homeomorphic to the countable 
infinite product of lines, s; symbolically h~s. We assume only that 
the reader understands the material of a first year course in topology: 
for example, elementary notions of complete metric spaces, product 
spaces, continuity, homeomorphisms, and the Tietze Extension The­
orem. While the treatment is elementary, the arguments are not 
necessarily simple. The reader should be prepared to draw figures 
and verify continuity statements. 

Among those who read an earlier version of this paper we particu­
larly thank Frederic Ancel, William Barit, William Jaco, Dallas 
Webster, and James West who made very useful comments. 

We define k as the space of square summable sequences of reals— 
that is, /2= {(xi)i>o\xi is a real number and X)ff?< oo }. For xt 3/6/2, 
the distance between x = (xi)i>o and y = (yi)i>o is defined by d(x, y) 
— ÜLéixi—yi)2]112. I t is easy to verify that under such a distance 
function, k is a complete metric space. 

We define s as the space of all sequences (xi)i>o of reals with the 
usual product topology. Thus 5 = H<>o Ri> where for each i, Ri is the 
space of reals. A basis for the topology of 5 is the collection of sets of 
the form H»>o *̂> where Ui is an open subset of Ri and for all but a 
finite number of the i's, Ui~Ri. 

Since for each positive integer i, the real line Ri is homeomorphic 
with the open interval ( — 1 , 1 ) = / ? , we may alternatively write 
s= IIi>o I°f We find this formulation convenient in §3. 

At times (§§7 and 9) we need to regard 5 as a complete metric space. A 
convenient complete metric to use is d(x,y)~ ]^(min[l/2% | x»—yi\ ]). 
An alternate complete metric is the traditional Fréchet metric 
d(x} y) = ]^|#;—;y;|/[2*(l + | # — yt\ ) ] . It is immaterial, for our pur­
poses, which we use, so let us suppose for simplicity that we use 
the first. 

1 The preparation of this expository article was supported by the National Science 
Foundation under grant GN 530 to the American Mathematical Society. The research 
leading to the paper was partially supported by NSF grant GP-6867 and GP-3857. 
Submitted by invitation of the editors; received by the editors April 19, 1968. 
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The question as to whether k is homeomorphic to s was raised by 
Fréchet [lO] in his book, Les espaces abstraits (1928), and also by 
Banach [5] in his book, Théorie des opérations linéaires (1932). In an 
added footnote in [5], Banach erroneously attributed to Mazur a 
negative answer to the question. More recently, Kadec, Bessaga, 
Pelczynski, and others have studied homeomorphisms between vari­
ous infinite dimensional Banach and Fréchet spaces. The work up to 
about 1964 is summarized by Bessaga in [ô]. In the direction of prov­
ing that k^s, Bessaga and Pelczynski [9] had proved that h~(hXs) 
and that h was homeomorphic to the countable product of copies of 
itself. Kadec [ l l ] , [12] proved that all separable infinite dimensional 
Banach spaces are homeomorphic. In 1966, Anderson [ l] proved that 
h~s. This was done by using results in [2] together with the result 
that k^ikXs). Based on an earlier Bessaga and Pelczynski result 
cited in [ó], the results of Kadec [ l l ] and Anderson [ l] established 
that all separable infinite dimensional Fréchet spaces are homeo­
morphic to each other. 

In the present paper, the result that h~s appears in §3 as Theorem 
1.1, but its proof makes use of lemmas and theorems from later sec­
tions. The procedure is summarized in §10. §11 lists open questions. 

2. Further definitions and notation. We let X\ Y denote the set of 
all elements of X not in F. 

Let Z denote the set of positive integers. For aQZt we let a1 — Z \a . 
We let sa= H*ea Ri and 1% denote the space of sequences (xi)iea of 
reals for which 23,-e«*?<°° with d(x, y) = (]C«ea(#"Ji)2)1 /2« 

The following two propositions are well known and easy to prove. 

LEMMA 2 A. If ais a nonempty subset of Z for which a' is nonempty\ 
then s^s0lXscl'. If a is infinite, then s%~s. 

LEMMA 2.2. If ais a nonempty subset of Z for which a! is nonempty, 
then h~l$Xlt. If a is infinite, then h~lZ* 

We use the convention that if a is an infinite subset of Z, then propo­
sitions concerning l2 and 5 are considered as applicable to 1% and sa. 

If aCZZy let Ta denote the projection of k or 5 onto 1% or sa. If a = {i}, 
we may write r« as r»-. 

A set K in /2 or 5 is deficient in the ith direction if Ti(K) consists of a 
single element. A set K in /2 or s is infinitely deficient if for some in­
finite set aC.Z, Ti(K) consists of a single element for each i£a. In this 
case we also say that K is deficient with respect to a. 

We use the term map to denote a continuous function. For ƒ a 
map of X into Y and KQX, the notation / | K denotes the map ƒ 
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restricted to the domain K. We use Id to denote the identity homeo-
morphism. 

Let G be an open covering of a space X, F be a subset of X, and ƒ 
be a map of F into X. We say that ƒ is limited by G if for each pÇz F, 
there exists a gpGG such that pÇzgp and f(p)GgP» The covering G 
provides a measure as to how close ƒ is to the identity. If X is a metric 
space, the mesh of G is the least upper bound of the diameters of the 
elements of G. 

Suppose / i , /2, • • • is a sequence of maps such that the limit of 
fufïOfi, • • • exists. We denote this limit by l im(/ t o • • • o / 2 o / i ) t > 0 

= L l I i > o fi and call it the infinite left product of the/*. 
In §5 we define invertible isotopies and adopt notation to be used in 

working with isotopies. In §7 we define an invertibly continuous family 
of invertible isotopies. 

We use Si to denote the set of all points of k whose distance from 
the origin is 1—that is, 5 i = {#©2! ÜC#? = 1} . 

We use Ei to denote {x &2 \ x, = 0 if j > i}. Then U£* is the union of 
all finite dimensional coordinate planes of /2. Sometimes (JE( is called 
infinite dimensional Euclidean space. We note that Z2\U£*=* {xGfe| #» 
5^0 for infinitely many i}. 

3. A homeomorphism of h onto s. Throughout this section we 
regard s= H*>o I? and let Ci={y£:s\ ^2y^i and for each j>0, 
\yj\ ^ 1 — 1A}• Note that d is compact since it is a closed subset of 
the product of closed intervals. 

The main result of the paper is the following. 

THEOREM 3.1. k~$. 

The plan for showing that h~s is to exhibit homeomorphisms 
through middle spaces as follows: 

h ^ /2\U JE* v^ Sx C\ (/i\U E/) * AU Ci ̂  s. 

The four homeomorphisms are guaranteed by Corollary 9.3, Lemma 
3.3, Lemma 3.2, and Corollary 9.4 respectively. 

The topology of the first three spaces above is determined by the 
topology of h while the topology of the last two is determined by the 
topology of s, so we may start by considering the bridge between h 
and s, namely the homeomorphism of 5in(fe\U£*) onto s\l)d. This 
bridge homeomorphism suggests why we chose to define a homeo­
morphism on 5in(/2 \U£*) instead of on fe. 

LEMMA 3.2. Sin(/AUE*)~AUCî. 
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PROOF, Throughout this proof we denote 5 i n ( / 2 \ U £ 0 by Sj*. Hence 
the coordinates of points of both Si* and 5 lie in ( — 1, 1). 

There are many 1-1 functions taking Si* onto a dense subset of s. 
Since most of the coordinates of each point of Si* are close to 0, one 
might hope to divide each of these coordinates by a suitable divisor 
and obtain the corresponding coordinate of the corresponding point 
of s. Let us consider such an elementary function h: Sf-^s where 
we let 

x = (xh x2, • • • ) e S i , and h(x) = (yh y2, • • • ) £ s . 

We note that #i E ( — 1, 1) and yi £ ( — 1 , 1) so we set yi = x\. 
Once xi is fixed, x2 has the limited domain ( — (1 —xj)1/2, (1 — ff?)1/2) 

while y2 can still be anywhere in ( — 1, 1). We take the domain of x2 

linearly onto the domain of y2 and thus define 

y% = V ( i - *î)1/2. 
Continuing in this fashion, we define 

yi = m/11 - JL *A 
1/2 

One may note that the function h we have defined is 1-1 and coordi­
nate wise continuous. Since 5 is a product space, coordinatewise con­
tinuity into s implies continuity. Hence h is continuous and thus is 
a map. 

One reason for working with Si* rather than Si is that we would 
have had difficulties trying to avoid dividing by 0. 

In order to study ft-"1, we may solve for (#i, x2, * • • ) in terms of 
(yu 3>2, • • • ). One finds that hr1 = g\ h(Sj*) where g: 5—>l2 is defined by 

/i \1/2/i V / 2 /i 2 N 1 / 2 

Xi * y,(l - yx) (1 - y*) • • • (1 - y^i) . 
Also, g is 1-1 and coordinatewise continuous. Coordinatewise con­

vergence in k does not imply convergence as can be seen by consider­
ing the sequence of points such that the it\i member of the sequence 
has all coordinates 0 except the ith which is 1/2. However, it is well 
known and easy to prove that coordinatewise continuity into Si does 
imply continuity. Therefore h~l=g\h(Si*) is continuous and h is a 
homeomorphism. (Incidentally, it may be shown that g defined on 
all of 5 is not a homeomorphism.) Another reason for defining the 
bridge homeomorphism on Si* instead of on l2 is that functions into 
Si are continuous if they are coordinatewise continuous. 
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The remaining part of the proof of Lemma 3.2 is to show that 
s\h(Sj*) =*UCt. This equality is no accident since the definition of d 
was chosen only after the definition of h. 

One finds from inductive use of the equation describing the xjs 
in terms of the y/s that 

2 > î - i - ( i - y î ) ( i - y î ) - - - < i - y î ) . 

Hence, if yÇîs, the sum of the squares of the first i coordinates of 
g(y) is less than 1. In fact, one finds that 

g(s) = < ^ G ^ | for each i, 53 % < If 

since for each x(Eh such that for each i> 53i x* < 1, one can inductively 
define yi coordinates so that g(y) =x. In particular, 5i*Cg(s) and 

s\h{s\) = g^lxEhl 53 *i < l | . 

To prove that h(Sf) =s\UC;, we need only show that if yGh(Si*), 
J2î y}= » and if yEs\h(Si*)9 £i°° y\ is finite. 

If yEs\h(Sx*) and g(y)=x, then 53f *?<!• Since 

^i ~ a< / f 1 ~ X) xA , then y< g Xi / ( 1 — 53 %) 

and 53y< « 53*< / ( i — 53 #A 
Hence, 53i° ^f is finite. 

If yÇzHSi*), we use a plan suggested by Robert Connelly and show 
that 53r y\ = °° by demonstrating that for each integer n, 
53» y?> 1- This is because 

«o 2 2 2 _1_ 2 _L 

2^ y 3B 1 1 - , . . > - ^ 
^^ oo A oo oo 

» Y^ 2 v̂  V* 
n n+1 n 

LEMMA 3.3. / 2 \ U E ^ 5 i P i ( / 2 \ U £ 0 . 

PROOF. The required homeomorphism is hi o A2 where hi is the ho-
meomorphism which takes each point (xu #2, * • • ) to (1, x\t #2, • • • ) 
and for each xÇzh%(l%)9 h(%) is the point of Si between x and 
( - 1 , 0 , 0 , • • . ) • 
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4. Convergence of homeomorphisms. I t is trivial to verify tha t 
the product (or composition) of any two homeomorphisms of a space 
X onto itself is a homeomorphism of X onto itself. Therefore, any 
finite product of such homeomorphisms is a homeomorphism of X 
onto itself. However, infinite left products, that is products of the 
form • • • o hi o • • • o h2 o hu may or may not converge so as to define 
a homeomorphism of X onto itself or even of a subset of X onto X. 

Equivalently, we may consider the possible convergence of the 
sequence hu h2 o hi, • • • of homeomorphisms of X onto itself. We 
may denote this sequence by (hi o • • • o h2 o fci)*->o. Frequently hi is 
close to the identity so that members of the sequence are products of 
the previous element of the sequence by a homeomorphism near the 
identity. 

There are two basic types of procedures which we shall use to 
establish that sequences of the form (gt*)t>o=!(A<o • • * oh2o hi)i>0 

converge to desired homeomorphisms of some subset Y of X onto X. 
Convergence Procedure I. A simple form of this procedure is repre­

sented by the following trivial but useful theorem. 

THEOREM 4.1. The sequence (gi)*>o of homeomorphisms of X onto X 
converges to a homeomorphism of the subset Y of X onto X provided that 

(1) for each pG.Y there exists a neighborhood U of p in X and an 
integer n(U) such that for each n>n(U), gn\ U~gn(U)\ U and 

(2) for each qÇzX there exists a neighborhood V of q and an integer 
n(V) such that for each n>n(V)t g^x\ V=g~{y)\ V and gZl(V)QY. 

Observe that if for each i > 0 , gi — hi o • • • o h2 o hu then the condi­
tion that gn\ U — gn{U)\ U becomes the condition that hn restricted to 
hn{U) o • • • o h2 o hi(U) is the identity restricted to hn(U) o • • • o h2 

ohi(U). Similarly, the condition g^\ V=gn(j)\ V becomes h^l\ V 
= Id| V. 

Convergence Procedure I I . In some instances it does not seem feasi­
ble to construct a desired homeomorphism by a sequential process 
using Convergence Procedure I. To handle such cases we introduce 
another procedure. While a simpler version of this convergence pro­
cedure has been applied to compact spaces, as far as the authors 
know, the formulation we give for complete metric spaces is new. 

If G is an open covering of a space X and h is a homeomorphism of 
X, we use h(G) to denote the collection of images of elements of G. 
Suppose (hi)i>$ is a sequence of homeomorphisms of a complete metric 
space X onto itself. We say that (hi)i>0 satisfies the inductive conver­
gence criterion if there is a sequence (Gi)i>o of open coverings of X 
such that for each positive integer i, 
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mesh Gi<\/2\ 
mesh(/^ o • • • o h2 o hi)~l(G%) < 1/2% and 
hi+i is limited by Gl 

THEOREM 4.2. If (hi)i>0 is a sequence of homeomorphisms of a com­
plete metric space X onto itself which satisfies the inductive convergence 
criterion, then (g*)t>o= (̂ * o • • • o hi o &i)*>o converges to a homeo-
morphism of X onto itself. 

PROOF. For each pÇîX, (gi(p))i>o is a Cauchy sequence since g%(p) 
and hi+i o g%(p) —gi+\(p) lie in some one element of d and mesh Gi 
< l / 2 \ This implies that the limit (g»)*>o is uniquely defined. Since 
each g is continuous and d(gi(p), gi+i(p))< 1/2{ for all p, the limit 
(gi)i>o is continuous. 

Also, for any qÇzX, q and K+^q) lie in some one element of G{. 
Since mesh gTl(Gi)<\/2\ the distance between gll(q) and gTl 

° K+I(Q) — gi+i(<z) '1S ^es s than 1/2*. Hence (gï"1(â,))*>o converges. In­
deed (gT1)i>o converges to a continuous function and thus (g»)»>o 
converges to a homeomorphism of X onto itself. 

The following is a variation of Theorem 4.2 that we shall use. 
If A, B are sets we use d(A, B) to denote the greatest lower bound of 
d(a, b) where aGA, b&B. 

THEOREM 4.3. Suppose (Ki)i>0 is a sequence of closed sets in a com­
plete metric space X and for each positive integer i, hi is a homeo­
morphism of X\hi-i o • • • o h2 o h o Id(X t \Ui _ 1 Kj) onto X. Let Gi 
be an open covering of XXU^"1 Kj such that mesh d< 1/2% mesh hi 
o • • • o h o h(Gi) < 1/2*, and if g&Gif diameter g <d(g, Ui""1 Kj)/2\ 
Then (hi o • • • o h2 o hi)i>0 converges to a homeomorphism of X\\JKi 
onto X if each hi+i is limited by hi o • • • o h2 o hi(Gi). 

The proof is similar to the proof of Theorem 4.2. The condi­
tion that diameter g<d(g, Ui"*1 Kj)/2l is used to show that 
(hî1 oh^1 o • • • o K1(q))i>o converges to a point of X\(JKj rather 
than to a point of UKj. 

5. Isotopies. Several times in this paper we shall be concerned 
with isotopies, which we define for our purposes as follows. For a 
metric space X, an isotopy Hoi X onto X is a continuous 1-parameter 
family of homeomorphisms Ht ( 0 ^ / g l ) of X onto X such that 
iüT0 = Id; it is required that H be simultaneously continuous in t and 
X rather than that homeomorphisms be near each other. 

One can think of an isotopy as a motion of X onto itself starting 
with the identity H0, ending with H%9 and using U s a time variable. 
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Although it is required that an isotopy H be continuous in both t 
and X, it is not ordinarily required that {HT1 }o^*âi be continuous 
in this sense. If it is, we call the isotopy invertible. In this paper we 
shall only use isotopies that are invertible. 

For compact spaces, all isotopies are invertible, but this is not true 
for spaces in general. A noninvertible isotopy H of k onto itself can 
be defined as follows. Let/* be a map of [0, l ] onto [ l / i , l ] such that 
fi[0, l/i+l]=fi[l/i, l ] = l. For each (xi, # « , • • • )£&i let 
Ht(xi, x2, • • • )==(xi'fi(t),X2-f2(t), • • • ). Although HQT1 is continuous 
in k and HT1^, 0, • • • ) is continuous in t, H~l is not continuous in t 
and h at * = 0, (0, 0, • • • )Ek. 

For KC.X, an invertible isotopy H pushing K off X is a 1-parameter 
family of homeomorphisms Ht ( 0 ^ / ^ l ) onto X such that 

flWd, 
Ht(X)~X f o r ( 0 ^ * < l ) f 

and 

H and H~l are continuous in t and X. 

Those who prefer to think of an isotopy as a map H of XX [0, l ] 
onto X that is an onto homeomorphism at every level may 
regard this invertible isotopy pushing K off X as a map from 
(XX [0fl])\(KX {1}) onto X satisfying the appropriate conditions. 

If K is a single point p, we say that H is an invertible isotopy pushing 
poffX. 

In Lemma 7.1 and Step 1 of Lemma 8.2 we exhibit invertible 
isotopies pushing points off s and a copy Z2(l) of /2. The motions in the 
two cases are rather different. The first pushes a point off 5 in some 
one direction while the second pushes a point off h(l) by increasing 
its norm (distance from the origin) using infinitely many directions. 
In both instances, the isotopies pushing individual points off the 
spaces are the key devices in pushing certain countable unions of 
closed sets of infinite deficiency off 5 and 4(1). 

For any isotopy H on a space X and numbers a, b ( 0 < a < 6 ^ 1 ) , 
we let H [a j b] denote the isotopy which acts on the interval [a, b] 
as H acts on [0, l ] . Specifically, 

H[o, b]t = 

Id for 0 ^ / ^ a, 

Hi for b S t Û 1, 

H\t-a) i (6-o) for a fa / ^ b. 



1968] A COMPLETE ELEMENTARY PROOF 779 

Observe that for H and F isotopies on X, a motion which is essen­
tially H followed by F may be represented as the isotopy defined for 
each t (0 2g t ̂  1) and any a, b, c (0<a<b<c^l) as F[b, c]t oH[a, b]t. 

The following proposition is a variation of Theorem 4.1. 

LEMMA S.l. Suppose that for each positive integer i, H{ is an invertible 
isotopy of X onto X and poE:X. Then 

H - f e n B<[I - (i/o, i - d/i+i)]«l 
V t>0 J 

is an invertible isotopy pushing po off X provided that 
(1) for each pG.X\{p0}, there is a neighborhood U of p in X and an 

integer n(U) such that for each n>n(U), H? = ld on H^u) o • • • 
oH\oH\(U) and 

(2) for each q(EX, there is a neighborhood V of q in X and an 
integer n(V) such that for each n>n(V), (JE^)"1 —Id on V and 
(fl?™o • • .oHloHl)-i(V)CX\{po}. 

PROOF. For any t ( 0 ^ / < l ) , let i be such that l - ( l / * ) > / . Then 
H*[l —(1/i), l — (l/i+l)]t is the identity. Hence Ht may be con­
sidered as a finite product of homeomorphisms of X onto itself. 
Hence, the continuity of H and H~l for values of tin (0 :g t < 1) follows 
from the continuity of the finite factors to be considered. 

For Xo(EX\{po} and / = 1, the continuity of H at (xo, 1) follows 
from Condition 1 in the statement of the lemma while if ^ £ X , 
the continuity of H"1 a t (x, 1) follows from Condition 2. 

6. Straightening sets in s. There are two related ways of showing 
that if a countable collection of compact sets are pushed out of 5, the 
remainder is homeomorphic with s. In one of these procedures, 5 is 
regarded as the pseudo interior of the Hubert cube. This approach 
was used in [2]. The procedure used in [2] offers an alternative (and 
perhaps easier) method of proving Corollary 9.4. However, in the 
present paper we adopt a procedure that parallels our treatment of 
the proof that k~h\\JE\ In §§ 6 and 7 we regard s as H»>o Ri where 
Ri denotes a copy of the real line. In this section we show how to 
move sets into such nice positions that they can be pushed out of s 
with a procedure to be described in §9. 

LEMMA 6.1. For any compact subset C of s there exists a honieo-
morphism h of s onto s such that h(C) projects onto a single point of Ri— 
that is, T\h(C) is a single element. 



780 R. D. ANDERSON AND R. H. BING [September 

PROOF. The proof is in two steps. In the first step we adjust C so 
that its image intersects any line parallel to the i?i-axis in at most one 
point. In the second step we move points in the 1st direction so that 
the final image of C lies in a hyperspace of s perpendicular to the 
jRi-axis. 

Step 1. For each i>l, let ƒ»• be a homeomorphism of RiXR% onto 
itself such that (1) fi does not change the 1st coordinate of any point 
and (2) for some closed rectangular region Di in RiXRi with 
T[i,i)(C) CDi, fi(Di) is a closed parallelogram region intersecting no 
line parallel to the i?i-axis in a set of diameter greater than 1/2*. 

Let ƒ be the homeomorphism of 5 onto itself such that f(xif x%} • • • ) 
= (*ii ^2, 3>3, • • • ) where yt is the 2nd coordinate of fi(xi, #*). Each 
point of s has a unique image in s and a unique inverse image in s 
determined coordinatewise. Continuity follows from the continuity 
of coordinate functions determined by the / / s . 

For any i>0, we know from the definition of ƒ*• t ha t / (C) cannot 
intersect any line parallel to the i^i-axis in a set of diameter more 
than 1/2*. Therefore f(C) intersects any such line in at most a 
single point. 

Step 2. Let s(0) be the set of points in 5 whose 1st coordinate is 0 
and T* denote the projection function of s onto s(0). Then r* | / (C) 
is a homeomorphism into s(0). 

Let <t> :r*(f(Q)-+Ri be defined by 0=rir*- 1 | rH { ( / (C)) . By the 
Tietze Extension Theorem there is a map <S : s(Q)—>Ri such that 
# | T * ( / ( Q W . 

Let h* be the homeomorphism of s onto itself such that for each 
point p(Es(0) and line Lp through p parallel to the i£i-axis, h*\Lp 

is a translation of —^(p) units in the 1st direction. The homeo­
morphism promised by Lemma 6.1 is h = h* of. Note that h(C)Qs(0) 
and thus ri(A(C))=0. 

THEOREM 6.2. For each collection {C<}»>o of compact subsets of s 
there is a homeomorphism g of s onto s such that each g(Ci) is infinitely 
deficient. 

PROOF. Let a\t ce2, • • • be disjoint infinite subsets of Z such that 
Ua t = Z. Let s be written as ü ; > o s<xi w n e r e s<xi== IL'sa,- Rj. 

Let 6 : Z~*Z be such that for each i>0, fr~l(j) is infinite. We regard 
each sai as a copy of 5 and learn from Lemma 6.1 that there is a 
homeomorphism gi of sai onto itself such that g»(r0<(G(o)) is deficient 
with respect to the first element of ce». 

Let g be the homeomorphism of s = ]X>o sa< o n t o itself defined 
coordinatewise as gi on sai. From the definitions of 6 and of the g/s 
it follows that for each i>0f g(C») is infinitely deficient. 
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7. Isotopies pushing points off s. We shall need to consider a 
2-parameter ( 0 < r g l , O g / ^ l ) family of homeomorphisms rHt such 
that for Y fixed, rH is an isotopy pushing the origin off s. We call 
such a family an invertibly continuous family of invertible isotopies 
if both rHt and rH^1 are continuous in r, /, and s. We shall want each 
rHt to be the identity outside the ^-neighborhood of the origin in s. 
We are supposing that s has the complete metric defined by d(x, y) 
= ]C(min(l/2*, |*<-y<|)) . 

We first describe an invertible isotopy pushing the origin off 5 
and then modify the isotopy to obtain invertibly continuous families 
of invertible isotopies each pushing the origin off s. 

LEMMA 7.1. There is an invertible isotopy H pushing the origin po off s. 

PROOF. We shall push p0 off 5 along the positive ray of the Xi-axis. 
For convenience, we regard each finite product of lines as having a 
Euclidean metric. 

For each positive integer i, let Fl be an invertible isotopy on 
RiXRi+i such that (1) F\ leaves each point whose 1st coordinate is 
less than i — 1 — l/2i~"1 fixed while (2) F[ carries the vertical ray from 
(i — 1 , —1/20 through (i — 1, 1) isometrically onto the horizontal 
ray from (i —1/2% 0) through ( i + 1 , 0). The isotopy Fi can result 
from a "limited rotation" about (i — 1, 0) (not all points of the plane 
being rotated) followed by a "limited translation." 

Let a&R2X • • • XRi, bERiXRi+u and cEUj>i+iRj. F o r a n Y 
i>l and any aER2X • • • XRi let <^(a)=max{0, l - 2 ' + 1 - d ( 0 , a)} 
where d(0, a) denotes the distance from a to the origin of Euclidean 
{i — l)-space R2X • • • XRi. To avoid a special argument, we sup­
pose that <f>i is the constant 1. Let H* be an isotopy on s defined for 
each / ( O ^ J g l ) as 

Ht(a, b, c) = (a, F^.( a )(o) , c). 

When we verify that Hl> H2, • • • satisfies Conditions 1 and 2 of 
the statement of Lemma 5.1, it will follow from that lemma that 

& = h n B<[I - iA, i - i/f+i]X 

is an invertible isotopy pushing p0 off s. Let A* denote H{ o • • • 
oH\oH\. 

(1) To see that the Hvs satisfy Condition 1, one need only consider 
the geometry of the successive motions. Specifically, we let pEs\po 
with p = (0, • • • , a,-, dj+i, • • • ) where a, is the first nonzero coordi­
nate of p. Let MP) = (&i> b2, • • • , &i, 6y+it ^y+2, • • • ) and h'+1{p) 
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= (ciy fa, • • • , fey+i, £i+2, #/+3, • • • ). If i > l > each of fa, • • • , b$ is 
zero but we shall not use this information. If any one of 621 • • • , 
6/+1, Cj+% is nonzero, there is a neighborhood U of p and an integer k 
such that <t>k ~ 0 on the projection of hk(U) into -R2X • • • XRk> Hence 
for k'^k, Hf = I d on hk(U). If each of fa, • • • , 6/+i is zero, then 
&is*7 since *'(0, • • • , 0, aj+2t • • • ) = (i, 0, • • • , 0, ai+2, • ' • • ) • If 
h^j and C/^ — O, C i < j + 1 — l / 2 m since F{+1 takes the ray from 
(J, - l /2>'+ 1) through (j, 1) onto the ray from (j+1 — 1/2**-1, 0) 
through ( j + 2 , 0). But if c%<j+l —1/2'+ 1 , there is a neighborhood Z7 
of £ such that the first coordinate of each point of h3+1(U) is less than 
j + l - l / 2 ' + 1 . Then for k^j+1, -Hf-Id on fc'+^CT). 

(2) To see that the Hvs satisfy Condition 2, it is only necessary 
to notice that HJ+1 does not move a point unless its first coordinate 
is greater than i—1/2* and the first coordinate of h{(po) is i. 

The following lemma is included as a stepping stone toward 
Lemma 7.3. 

LEMMA 7.2. Suppose s is expressed as s = saXsa' as suggested in 
Lemma 2.1 where sa, sa' are copies of s with origins p%, p%. Then if H 
is an invertible isotopy pushing p% off sa and cj>r is a continuous ^param­
eter ( 0 < r ^ l ) family of maps of sa' into [0, l ] such that for each r, 
0 ^ ( 1 ) =Po, Men 

rBt(p,q) « (Bt.tr(q)(p),q) 

defines an invertibly continuous 1-parameter ( 0 < r ^ l ) family of in­
vertible isotopies each pushing the origin off s. 

The proof is left to the reader. 

LEMMA 7.3. There is an invertibly continuous 1-parameter ( 0 < r ^ l ) 
family of invertible isotopies rH each pushing the origin po off s such that 
rHt is the identity outside the r-neighborhood of p0. 

PROOF. For any r ( 0 < r ^ 1), rH is to be an isotopy whose "action" 
pushes the origin off a certain subspace sQ of s and is "phased out" in 
a neighborhood U of the origin in the complementary subspace só 
(i.e., S = SOXSQ). The two "factors" which determine the size of the 
domain of support of the isotopy rH are (1) the diameter of the sub-
space So and (2) the diameter of the neighborhood U of the origin in 
só. We shrink the former, as r tends to zero, by a process of swapping 
axes and the latter by a reduction process introduced after each 
swap of axes. 

Let a be an infinite subset of Z such that a' is infinite and 
1,2,3£ce'. The distances in s" and sa' are given by d(x, y) 
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« I^e«(min(l /2% |x<—y<| )) a n d d ( * , y ) « £ ie«Kmin( l /2^ |av- -y , | ) ) 
respectively. Note that the diameter of sa is less than 1/23. 

Let H be an isotopy pushing the origin off sa as guaranteed by 
Lemma 7.1. 

Let <j> be a map of sa ' onto [0, l ] such that <trl(\) = PQ and 0 = 0 
for all points outside a 1/8-neighborhood of p*. We could have 
specified that <t>(q) = max [0, l - 8 52<e«'(min 1/2% |*<|)] for 
3 ^ (̂ «1» «̂2» è * * ) but we shall not be concerned with the particular 
description of <j>. In fact, it is perhaps best not to define 4> in terms of 
the distance from p* since this distance changes when coordinates 
are interchanged. We define \H so that for each (p, q)ÇzsaXs«' 
(with (p, q)?*po for * = 1) 

iHt(p, q) « (Ht.*(q)(p), q). 

Note that \Ht(p, q)=*(p, q) if d((p, q), £ o ) ^ l / 4 . This is because 
1, 2, 3 G a ' and d((£, q), p0) ^ 1/4 implies d(q, p%') è 1/8 and <f>(q) = 0. 

As r changes from 1 to 1/2, we define rH by modifying \H by swap­
ping axes and reducing #. We describe each of these operations 
separately. 

Swapping axes. Our purpose of swapping axes is to move the small 
positive integers out of a and hence reduce the diameter of sa. We 
recall that 1, 2, 3 are in a\ Let j be the least integer in a and k be an 
integer in a' larger than j . Let a{ be the subset of Z obtained from 
a' by replacing k by j and a% be the subset obtained from a by 
replacing j by k. 

The action of the isotopy \H is defined on sa and is phased out in a 
neighborhood of the origin in sa'. We gradually transfer the action 
over 3 / 4 g r ^ l so that the action of z^H will be defined on sai and 
be phased out in a neighborhood of the origin in sai'. The following 
formulas describe a suitable version of this process. 

For O ^ X g 1, let F\ be the rotation of 5 such that if F\(xu ^2, • • • ) 
= (yu y2, • • • ), then yi*»Xi unless i £ {j, fe} and (y,-, yk) is the image 
of (xj, Xk) under a clockwise rotation of the plane RjXRk by X*7r/2 
about the origin. Let f(r) be the linear function that sends 1 to 0 
and 3/4 to 1. Then for 3 / 4 g r g l , 

rHt = Ff{r) O iHt O F/(r). 

We note that if d(x, p0) è 1/2, then rHt(x) =*x if 3 / 4 £ r g 1. This is 
because for such # d(Ffir){x), pQ) ^ 1 / 2 —1/2*^1/4, \Hto Ff{r)(x) 
= Fnr)(x) and F^* o iiJ« o F/(r)(pc) = # . 

Reducing <f>. Here we define , i î for 1/2 ^ r ^ 3/4. Let x*=(p', q') 
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where p'Çzs"1, g 'Es0 1 ' . From the definitions of \H and F\ and specifi­
cally from the fact that the rotation of RjXRk which determines F\ 
merely interchanged vertical and horizontal lines in RjXRk, it fol­
lows that 

z«Ht(p',q') = (# / .« 8 / 4 ( f l ' ) (A? ' ) 

where 0(3/4) is defined below and where H/ is T~l o Hto T applied 
to sai instead of sa with T being a permutation of a finite number of 
coordinates. The reason for introducing T is that k may not be the 
least integer in a\ and in this case we need to shift k to the first ele­
ment of a\ and to move all the others in a% which are less than k into 
their successors in a\. Also, 03/4 is a map of sai onto [0, 1 ] such that 
03/1 (1) —Pti a nd 03/4 = 0 except in a small neighborhood of the origin 
p%i'. In fact, 03/4=0 o T' where T' is the map from sai onto sa' which 
merely moves the j t h coordinate of a point to the feth coordinate and 
changes its sign. Note that if d(x, po)*zl/2t then 03/4(<z') = 0 as 
d(q', ^ i ) è 1 / 2 - 1 / 1 6 and d(T'(q')t p?) = 1/2 - 1 / 1 6 - 1 / 3 2 = 1/8 
which implies that 03/4(<?') =0(2"'(g')) = 0 . 

Let 0i/2 be a map of sal onto [0, l ] so that 01/2^03/4, 01/2(1) —Ĵ O1» 

and 0i/2 = 0 except in the l/24-neighborhood of p%i. For each qf £.sai let, 
<t>r(q') divide 0i/2(#')> 03/4(â,/) in the same ratio that r divides 1/2, 
3/4 with 0r(<?') =0i/2feO if 01/2(<Z,)=03/4(g'). Then for 1/2 fir S 3/4, 
define 

As r moved from 1 to 1/2, we defined rHt from iiît by swapping 
axes and reducing 0. By similarly swapping axes so as to replace the 
least element of ai with a larger element of a{ and by further reducing 
0, we define rHt ( 1 / 4 ^ r ^ 1/2) from 1/2^ in an analogous fashion. 
Similarly, we define rHt as r shrinks to 1/23, to 1/24, • • • . 

8. Isotopies pushing points off k. We prove lemmas about pushing 
points off l2 similar to those we proved about pushing points out of 5 
in the last section. We recall that Si is the set of all points of h at a 
distance of 1 from the origin. 

LEMMA 8.1. There is an invertible isotopy F pushing a point off S\. 

PROOF. Let Z2(l) be the set of all points of k whose first coordinate 
is 1. For each positive integer i, let pi denote the point of k whose 
first i coordinates are each 1 and whose other coordinates are 0. 
We prove Lemma 8.1 in two steps. 

Step 1. In this step we exhibit a particular invertible isotopy H 
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on Z2(l) pushing pi out of /2(1). The plan is to push pi to p2, then to p$t 

then to pit • • • , and hence off /2. We take care that no point other 
than pi undergoes more than a finite number of these pushes. 

For each integer i ^ 2 , let Ui be the neighborhood of pi in /2(1) 
such that 

Ui = | ( i , *„ • • • )Eh(i) | E (1 - *v)2 < 1A2 

Let H1 be the isotopy on /2(1) such that H] is a translation of t 
units in the x2 direction. For each integer i^2, If*' is the isotopy on 
/2(1) such that #ƒ(£) is the point resulting from translating p by 
i*t*d(p, (k(l)\Ui)) in the Xi+i direction. Then 

Ht = L n ^ [ i - 1 / * \ i - 1 / ( * + 1 ) ] * . 
*>0 

I t may be shown with the use of Theorem 4.1 and Lemma 5.1 that 
H is an invertible isotopy pushing pi out of /2(1). 

Step 2. In this step we describe an invertible isotopy F pushing pi 
off Si. Let Sf be the set of all points of Si with positive 1st coordinate 
and p be the projection of S* onto /2(1) from the origin. The invertible 
isotopy F promised by Lemma 8.1 may be defined as 

Ft(p) = p- 1 o Ht o p{p) if pGS*i, 

= p apesi\si 
To complete the proof we need only verify the continuity of F and 

F~x at points p £ S i whose 1st coordinate is 0. Suppose the ith coordi­
nate of p is not 0 and ô is one third the absolute value of this coordi­
nate. A calculation shows that if U is the ô-neighborhood of p in Si 
and q(Ep(Ur\SÎ), then the absolute value of the ith coordinate of q 
is greater than 2. For k^if Hf and (Hf)"1 do not move q. Hence, to 
verify the continuity of F and F~l

} we only need to check the effect of 
a finite number of p""1 o H*t o p's near p; in fact we only need to check 
one of them since the composition of a finite collection of continuous 
functions is continuous. 

A computation shows that if £ = (0, x2, xz, • • ' ) G 5 i and 
q~ Cvi» ?2, • • • ) £ S i " within ô of p, then for some O ^ 0 ^ 1 , 

p^oCSÎîf1 op(g) = (k-yi,k-y2, • • • ,k(yj + 6-yi), • • • ) 

where k = (l+2*yj*yi'0+yl'd2)~112. If 5 is small, then yi is small and 
k is near 1. Hence coordinatewise, p""1 o (H?)"""1 ° p(q) 'iS n e a r P* Coordi-

• 
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natewise continuity in Si implies continuity there so F is continuous 
at p. Similarly, F~* is continuous at p also. 

LEMMA 8.2. There is an invertible isotopy H pushing the origin po 
off k such that each Ht is the identity outside the l-neighborhood of po. 

PROOF. For each point p^po, we let ap denote the projection of p 
from po on Si. 

Let <j> be the map of the nonnegative reals onto [0, 1 ] such that 
0(x)=O if x*zl, <£(0)=0, 0(1/2) = 1, and <t> is linear on each of 
[0, 1/2] and [1/2, l ] . 

The isotopy H promised by Lemma 8.2 is defined by Ht = H2 [ l / 2 ,1 ] « 
o Hl[0, 1/2]* where Hl and H2 are isotopies defined as follows. The 
isotopy H1 is the identity outside the l-neighborhood of po and 
H\{po) = (1/2, 0, 0, • • • ). For each t ( O ^ g 1), Hf(p) is at the same 
distance from po as p and the projection of Hf(p) from p0 on Si is 
Ft'<t>WptpQ))((ip) where F is the isotopy of Lemma 8.1. 

LEMMA 8.3. There is an invertibly continuous 1-parameter (0<rSJ 1) 
family of invertible isotopies rH each pushing the origin po off h such 
that f or any t (O^g/^l) , rHt is the identity outside the r-neighborhood 
ofpo. 

PROOF. The required isotopy is defined by 

rEt = roHtol/r 

where H is the isotopy of Lemma 8.2 and r(p) is the point whose 
coordinates are obtained by multiplying those of p by r. 

9. Eliminating sets with small pushes. Can a small push send a 
mathematician out of society without leaving a vacancy? We shall 
be interested in conditions under which a set can be pushed out of a 
space with a small push. 

LEMMA 9.1. Let X denote h or s, G be an open covering of X> a be an 
infinite subset of Z, and K be a closed subset of X which is deficient with 
respect to a. Then for each open set U containing K there exists a homeo-
morphism h of X\K onto X such that h is limited by Gf h is the identity 
except on U, and Ti(x) ~Ti(h(x)) for each iÇ~af. 

PROOF. We suppose a V 0 and write X = XaXXa' as suggested by 
Lemmas 2.1 and 2.2. With no loss of generality we suppose that 
ra(K) = [p%] where p% is the origin in X«. Let r*.(K) =K'CXa'. See 
Figure 1. 

We need a function r from Xa' into (0, l ] to measure how far each 
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point (/>£, g) lies inside elements of G. Let G' be an open covering of 
X of mesh less than 1 such that each element of G' lies in an element 
of G and each element of G' intersecting K Hes in U. Letting Vt(x) 
denote the e-neighborhood of x in X, we define 

r(q) = sup {e| V2€(p%, q) lies in some element of G'}. 

Note that for each q&Xa', r(q)>0. 
Next, we need a function t from X«' into [0, l ] to measure the 

degree of closeness of points of Xa' to K'. Let 

A - {xex*'\Vrv>(ps,x)<t u} 
and 

t(q) = d(q,A)/(d(q}A) + d(q,K')). 

(We supposed A?*0. If A 5*0, define /(g) *= 1.) 

Note that 2 r U £ ' « 0 , *CK') = 1, and *C4)~0. 
By Lemma 8.3 for l2 (and thus for Ç) and by Lemma 7,3 for 5 

(and thus for sa), there exists an invertibly continuous family 
rH ( 0 < r ^ l ) of invertible isotopies each pushing p j off X* and such 
that for each t ( O g / ^ 1 ) , ri? f is the identity outside the r-neighbor-
hood of PQ in Xa. 

We shall verify that the desired homeomorphism h of our lemma is 

HP, ?) = (r(«)Bt(q)(p), ff). 

Since t(q) = 1 for qÇ-K', we note that for such qt rw)Ht(q) is a homeo­
morphism of (Xa\{po})X {q} onto Z«X {q}. Also, since *(<?)< * for 
qE.Xa'\K', we note that for such q, ,-(«)#"*(«) is a homeomorphism of 
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XaX{q} onto XaX {q}. Since r and t are continuous functions on X 
and rH is a continuous family of isotopies, then h is continuous. Since 
rH is an invertibly continuous family of invertible isotopies and hr1 

is described by hrl(p) = (nq)H^{p), q)} h~l is also continuous. Hence, 
h is a homeomorphism of X\ i£ onto X. 

Since g is the second coordinate of h(p, q), r»(x) = Ti(h(x)) for each 
iÇz<xf. We note that A is the identity outside U since rHt is the identity 
outside the r neighborhood of p% and Vr(q)(p%, q)C.U if /(g)7*0. 

I t only remains to observe that h is limited by G. Since rlï* is the 
identity except on the ^-neighborhood of p% in Xa, either h(p, q) 
= (p, q) or each of p and r(q)Ht(q)(p) lie within r(q) of $J. I*1 this latter 
case, the definition of r(q) insures that both (p, q) and h(p, q) lie in 
an element of G containing (p0r q). 

We are now in a position to prove a theorem having two important 
corollaries. 

THEOREM 9.2. Let X denote either Z2 or s, U be an ópen set in Xt 

and {Ki} i>0 be a countable collection of closed sets of X which lie in U, 
with each Ki having infinite deficiency. Then there exists a homeomor­
phism h of X\\JKi onto X such that h\ X\U is the identity. 

PROOF. By a standard sequential process augmenting one finite set 
at a time, it is routine to show that there exists a collection {«*}*><) 
of disjoint infinite subsets of Z such that Ki is deficient with respect 
to ai. Using Lemma 9.1 to assert the existence of hu we can induc­
tively define a sequence of homeomorphisms (&t-)t>o and a sequence 
of coverings (G,)i>o satisfying the hypotheses of Theorem 4.3 (speci­
fying that hi does not change the j-coordinate of any point unless 
iG«») so that L Hv>o hi is a homeomorphism of X\[)Ki onto X. 

COROLLARY 9.3. h^JE^h. 

COROLLARY 9.4. If {d} <>o is a countable family of compact subsets of 
s, then s\l)Ci is homeomorphic to s. 

PROOF. I t follows from Theorem 6.2 that there is a homeomorphism 
h of s onto itself such that each h(d) is infinitely deficient. Then 
Corollary 9.4 follows from Theorem 9.2. 

The following corollary may be useful in studying spaces which 
are locally like h or s. 

COROLLARY 9.S. If U is an open subset of h and Ki, K^ • • • are 
compact subsets in U, then there is a homeomorphism h of k\\JKi onto 
h such that h\ h\U is the identity. 
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PROOF. For convenience, we regard h as s. I t follows from Theorem 
6.2 that there is a homeomorphism g of 5 onto itself such that each 
g(Ki) is infinitely deficient. We learn from Theorem 9.2 that there is a 
homeomorphism h1 of s\l)g(Ki) onto s such that h'\s\g(U) is the 
identity. Then h = g~~l ohog. 

10. Summary of the procedure. In the foregoing we have estab­
lished the existence of a homeomorphism between /2 and s (Theorem 
3.1). Our method of attack was to use several intermediate spaces and 
homeomorphisms as follows: 

A B C D 
h~k\ U E*~SI r\ (h\ U £«)~A U G~S. 

Of the four homeomorphisms, B was easily established in Lemma 
3.3 and C was established in Lemma 3.2 by exhibiting explicit for­
mulas. The bulk of the paper was concerned with apparatus for 
establishing A and D which were stated as Corollaries 9.3 and 9.4. 
§4 identified criteria for the convergence of sequences of homeo­
morphisms and §5 introduced isotopy procedures to be used later. 

§§6 and 7 were concerned with properties of 5 while §8 was con­
cerned with properties of h analogous to those of §7 for 5. In this 
treatment, it appears as if /2 is a simpler space to handle than is s, 
but in fact the procedure was designed for 72 and then adapted to s 
since we were unable to adapt to h a more natural simpler pro­
cedure for s. 

Finally, in §9, the results of §§7 and 8 pushing individual points 
off $ and h were used to push UC< off s and U£* off /2. 

11. Some open questions related to s or Z2. Various topological 
properties of s or h have been studied by Klee [13], [14], [15], 
Anderson [ l ] , [2], [3], [4] and others. In various survey papers to 
appear in the Proceedings of the Symposium on Infinite Dimensional 
Topology (Annals of Mathematics Study), such properties are dis­
cussed. Here we list a number of open questions suggested conversa­
tionally or in print by one or more of several authors including 
Bessaga, Pelczynski, Klee, Fort, Borsuk, Eells, Palais, Henderson, 
Corson and others. 

In this section we restrict ourselves to questions directly related 
to s or h (and thus to separable metric spaces). See Bessaga [6] 
for many questions concerning homeomorphisms between various 
topological linear spaces. 

Questions Concerning the Hubert Cube as a Compactification of s. Let 
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the Hubert cube, I00, be written as H*>o ^ where for each i>0t I» is 
the closed interval [ — 1, l ] . As in §3, we may regard 5»= H o o i ? 
where for each i > 0 , ƒ? is the open interval ( — 1, 1). Then sQI™ and 
i00 is a compactification of 5. Indeed, both s and i°°V a r e dense in i00. 
A fi*-homeomorphism is a homeomorphism h of i00 onto itself such 
that h(s)=s and a ^-homeomorphism is a homeomorphism fe of i00 

onto itself such that h(s)Z)s- A closed set K in a space X is said to 
have Property Z if for every nonnull homotopically trivial open set 
U in Xt U\K is nonnull and homotopically trivial. 

(1) Let KQI00. What are necessary and sufficient conditions on 
K (or on I°°\K) in order that there exist a homeomorphism of i00 onto 
itself carrying K onto ^(J00)? Anderson has recently shown that if 
•KD-BfT00) then in order that such a homeomorphism exist it is neces­
sary and sufficient that K be the countable union of closed sets with 
Property Z. 

(2) A special case of (1) is the following. Let sQMCI00. What are 
necessary and sufficient conditions on M in order for there to exist a 
^-homeomorphism h such that h(s) =M? In particular, is it necessary 
and sufficient that (a) I™\M be the countable union of compact sets 
and (b) each compact subset of M have Property Z in M? (Conditions 
(a) and (b) are clearly necessary.) 

(3) A different version of question (2) would ask simply for neces­
sary and sufficient conditions that 5 and M be homeomorphic. 

(4) Let Sf and I? be the sets of all points of s and / * with only 
finitely many nonzero coordinates. Characterize the subsets K of 
s (or J60) for which there exist homeomorphisms of s (or J00) onto itself 
carrying K onto S/ (or 7r

co). 
(5) Regarding sQI™ it is easy to show that there exist homeo­

morphisms of s onto itself that cannot be extended to /^-homeo­
morphisms, but the following question seems more interesting. For 
any homeomorphism h of s onto itself does there exist a homeo­
morphism ƒ of s onto itself such that f^hf can be extended to a 
j3*-homeomorphism ? 

Questions on Infinite Products. (6) Is every product of a compact 
absolute retract by J00 homeomorphic to I00? 

(7) Is every countable infinite product of compact absolute re­
tracts homeomorphic to J00? 

A set is a topologically complete absolute retract if it admits a 
complete metric and is a retract of every metric space in which it is 
embedded as a closed set. 

(8) Is every product of a topologically complete absolute retract 
by s homeomorphic to s? 

(9) Is every countable infinite product of topologically complete 
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absolute retracts (with infinitely many noncompact factors) homeo-
morphic to s? 

I t is reasonable to weaken questions (6) to (8) by replacing 
"absolute retract" by "contractible finite complex" or a similar condi­
tion. In an as yet unpublished paper, Anderson has shown that any 
countable infinite product of dendrons is homeomorphic to I00. 
(A dendron is an acyclic locally connected one-dimensional con­
tinuum.) He feels it likely that the methods of the proof of this 
proposition can be modified to show that any countable infinite 
product of contractible finite complexes is homeomorphic to I00. 

(10) Is every product of J00 by a finite connected complex homeo­
morphic to a product of I00 by some manifold-with-boundary? 

(11) Is every product of 5 by a finite connected complex homeo­
morphic to a product of 5 by some manifold-with-boundary? 

Questions on Topological Banach Manifolds. A number of authors 
have studied the differential topology of so-called Banach manifolds. 
For our purposes, we consider a topological Banach manifold (T.B.M.) 
to be a connected separable metric space locally like s—that is with an 
open covering of sets each homeomorphic to s. (In effect we are speci­
fying that our Banach manifolds are modeled on some separable 
infinite dimensional Banach space.) 

(12) Can every T.B.M. be imbedded in 5 as an open set in s? 
(13) If a T.B.M. can be imbedded in 5 as an open subset of s, then 

the T.B.M. has a local compactification as a metric space admitting 
a cover by open sets homeomorphic to open subsets of ƒ*. Further­
more the T.B.M. intersects such open sets in I00 in the manner in­
duced by the open imbedding. As a weaker version of the imbedding 
problem of (12), we can ask if such a local compactification of each 
T.B.M. is possible. 

(14) Is every contractible T.B.M. homeomorphic to 5? What about 
the special case where the T.B.M. is homeomorphic to an open sub­
set of s? 

(15) More generally than in (14), are every two T.B.M.'s that are 
of the same homotopy type, homeomorphic to each other? 

Questions on Unions of Two Sets. (16) Let M-HKJK. If H, Kt and 
HC\K are all homeomorphic to I00, is M~I°°? 

(17) Let M=H{JK. If H and K are both closed or both open 
and if H> K, and HC\K are all homeomorphic to s, is M~s? 

(18) Let M = H\JK. If H} K, and M are all homeomorphic to J00, 
is HC\K~I«>'} 

(19) Let M=H\JK. If H and K are both closed or both open and 
if H, Ky and M are all homeomorphic to s, is Hr\K~s? 

Questions on Spaces of Closed Subsets. (20) Is the space of all closed 
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subsets (with the Hausdorff metric) of an w-cell (or of I00) homeo­
morphic to 700? This is not even known for n = 1. 

(21) Is the space of all subcontinua of an w-cell (n>l) or of I00 

homeomorphic to 700? 
Questions on Spaces of Homeomorphisms. (22) Is s homeomorphic 

to the space of all homeomorphisms of a disk onto itself which are 
the identity on the boundary of the disk? I t is known that 5 is homeo­
morphic to the space of orientation preserving homeomorphisms of 
an interval onto itself. 

(23) For any geometric w-sphere or w-cube X and any sufficiently 
small €>0 , is s homeomorphic to the space of all homeomorphisms 
of X onto itself which are within e of the identity? The answer is 
almost certainly yes for n = 1. 

(24) Is 5 homeomorphic to the space of all homeomorphisms of 
I00 onto itself? 
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