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Let R be the set of all sets of natural numbers. A collection (ü of 
subsets of R satisfies a reduction principle if, for every A and 5 G d , 
there are A' and B'E® such that A'QA^B'QB, A'UB'=*AUB, and 
AfC\B' is empty. For n>0 let Hi and S« be, respectively the set of 
u i subsets of R and the set of 2£ subsets of R. It is known that Ilj and 
S2 satisfy reduction principles and that for no n do both Ilj and Zi 
satisfy reduction principles. (For basic definitions and facts concern­
ing the analytical hierarchy and the degrees of unsolvability, see [5].) 
Using the Axiom of Constructibility, Addison [l] shows that, for all 
wè 2, 2£ satisfies a reduction principle. J. Silver has shown that 
Addison's result is consistent with the assertion that a measurable 
cardinal exists. 

For each w>0, let Yl
n be TL\ if n is odd and 2„ if n is even. For a 

statement of the Mycielski-Steinhaus Axiom of Determinateness 
(AD) and proofs of some of its consequences, see [4]. We assume AD 
and the Axiom of Dependent Choice (DC) and outline a proof that, 
for every n% V\ (and hence r£) satisfies a reduction principle. This 
result has been proved independently by Moschovakis and Addi­
son [2]. 

Since AD is false, a word is in order about the significance of our 
proof. In the notation of [4], AD says that, for every PC2W, G*(P) 
is determined. Although this contradicts the Axiom of Choice, it 
remains possible that a very large class of G*(P) are determined. For 
instance, it is possible that G2(P) is determined for every projective 
P, and this is enough to deduce our result. Indeed, to prove reduction 
for Tn we need only assume that G%(P) is determined for every A ^ P . 
We need DC for n ̂  4. While AD may well be consistent with DC, our 
justification for using DC is rather that we are assuming only a part 
of AD which we hope to be consistent with the Axiom of Choice. 

Our tool in studying the analytical hierarchy is the Lemma below. 
Our first proof of reduction for H\ was based on a new proof by 
Blackwell [3] using infinite games—of reduction for Et}. (The methods 
of [2] are closely related to those of Blackwell.) However, the Lemma 
provides a different proof which generalizes easily to all odd levels of 
the hierarchy. The Lemma is a consequence of AD and is an interest­
ing proposition in its own right. Also, the problem of proving the 
Lemma consistent (say, assuming large cardinals of some kind) might 
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be much easier than the consistency of full AD. (The Lemma is incon­
sistent with the Axiom of Choice.) 

LEMMA. Let 8C£), the set of all degrees of unsolvability. There is a 
degree do such that either d^do~->dG& or d^ do—><fE 3D — 8. 

PROOF (Assuming AD). Let P be the set of all sequences G2W whose 
degree of unsolvability belongs to 8. We consider the game G2(P). 
Suppose for definiteness that I has a winning strategy. The strategy 
is essentially a number-theoretic function. Let c/0 be its degree of 
unsolvability. We show that cf^cfo—>df£8. Let d*tdo and let a be a 
sequence of degree cf. Suppose II plays a and I plays according to his 
strategy. The sequence produced has degree d. Hence d £ S . 

The Lemma yields a countably additive zero-one measure, which 
we call fx, on the degrees. jii(8) = 1 provided that every sufficiently 
large degree belongs to 8. (The particular measure fx is very important 
in the sequel. Many other measures on 3D can be defined using AD.) 
To prove a reduction principle for each Tl, we simply use fx to con­
tinue past level 2 the familiar process of assigning ordinal numbers to 
Tj sentences. This assignment of ordinals is enough not only to prove 
reduction principles but also to lift much of the theory of II} and Sg 
up to a theory of Tj. (See [2] for details.) The delicate theorems about 
II}, such as the Kondo-Addison Theorem, seem, however, to require 
more than just this assignment of ordinals. 

For each n>0 and m^O, let W% be the set of all (e, cei, • • • , am) 
such that e is the Gödel number of a Yl

n formula Aoim set variables 
and A(OL\} • • • , am) holds. We sometimes write (e, ai, • • • , am) as 
(e, a) or A (a) . By induction on n, we assign ordinals \e, a\n to the 
members (e, a) of W%. The assignment of ordinals will have two 
properties: 

(1) The relations | eh oti \n < \ e2, a2 \
n and | eh «i | n ^ | e2, a 2 1 n are T£. 

(2) For (e2} c*2)E W%, the complements of | ei, « i | n < | e2, a2\
 n and 

| eu « i | nS | e2, a2\
 n are Tl

n uniformly in (e2, a2). 
For n = 1, the assignment of ordinals is a standard procedure. There 

is also a well-known method for using the assignment for II} to get 
an assignment for Sj. This method is perfectly general and allows us 
to go from Il i t o S j + 1 : let | (la)A (a, a) \ w+1 = inf {| A (a, a) \n: A (a, a)}. 
We omit the details. 

Let n^3 be odd. Let (a) A (a, a)EW%. For each a £ i ? , let d(a) be 
the degree of ce. We assign to each degree of unsolvability d an 
ordinal | A(d, a) \ n~l as follows: 

| A(d9 a) \n~l = sup{ | A(a, a) |*-* + l:d(a) g d } . 
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By induction, the predicate 

\B(d(fi),9)\~-*<\A(d(a),a)\~-* 

is easily seen to be Ai_t uniformly in (A, a, a); similarly for ;£. We 
define | A (a) \ * by stipulating that 

\Q3)B(/J, g)|» < \(<*)A(a,a)\» 

«-•M({d: | B(d, §) I»-1 < | A{d, a) I»-1}) - 1 

<r+ (a)A(a, a) & (« ' ) ( 3o)(</(«') 

g d(«) & | 5(d(«), 0) J»"1 < | i4(d(o), a) I»"1) 

«-> ( a ) ^ ( a , a ) & ( 3a ') (a) (<ƒ(«') g ef(a) 

-+ | B(d(a), ff) I»"1 < | 4(d(a), a) 1-0. 

If < is well founded, we can simply assign the least ordinals con­
sistent with < . But the well-foundedness of < is just a standard fact 
about ultraproducts with respect to countably additive measures. 
If < were not well-founded, by DC there would be a sequence 
| (a)Ai(a, «i)| n > | {a)A%{af a2)| n > * • • . Hence, on a set of measure 
one, \Ai(d, « O K 1 > \A*(df a 2) | n- 1> 

Reduction for T\ is now easy. Let A = {a : A (a)} and B = {a : B (a)}, 
where A (a) and B(a) are I*. Let A' = \a: A (a)8c]\ B(a) \n < \A (a) | n} 
letB'={a:B(a)&r\\A(a)\n^\B(a)\n}. 

We do not know whether AD + DC implies uniformization for r£. 
We conjecture that it does. R. Solovay and the author have shown 
that AD+DC does yield one new basis theorem: Every nonempty 
Sj set has a A\ member. However, our proof does not really need AD, 
but requires only that a Ramsey cardinal exists. 
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