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Browder and Livesay [ l ] have associated with each differentiate 
fixed point free involution T: 22«+1—>S2«+1, where 2 =22«+ 1 is a homo-
topy sphere, a "signature" <rÇ2, T) £f Z(^0 mod 8) if q is odd, or an 
"Arf invariant" c(2, T) £ ^2, if q is even. If q à 3, then 2 contains a 
differentially imbedded 2^-sphere invariant with respect to T if and 
only if<r(2, T) - 0 or c(2, T ) = 0 [ l ] . 

S. Lopez de Medrano has constructed for every odd q examples of 
involutions T with nonzero signature. We prove the following 

THEOREM. For every feel there exists a fixed point free differentiate 
involution T: 2 4 W - » 2 4 * + 1 with c(2, T)?*0. Here 2 is the "Kervaire 
homotopy sphere," i.e., the generator of bPu+2 [s], [4] if the latter 
group is 9e 0; otherwise it is the standard sphere. 

The author understands that D. Montgomery and C. T. Yang 
have an example of a differentiable involution on 2 9 with c(2, T) 9*0. 
The fact that there are PL-involutions with cÇ2t T ) ^ 0 on any 
(4& + 1)-dimensional sphere follows from the classification of C. T. C. 
Wall [8]. 

I would like to thank G. R. Livesay for valuable suggestions and 
for many discussions which have helped me understand the problem. 

1. Recall of definitions. Let T be a differentiable (or PL) fixed 
point free involution on 2=2 4 & + 1 . A characteristic manifold N*k is 
an invariant submanifold such that 2 = ^ 4 U B , N~AC\Bf B — TA. 
There always exists such an N which is (2fe — l)-connected [ l ] . Let 
G=H2le(N, Zt)=H2k(N)®Z%. For x, y&G, the intersection coeffi­
cients A(x, y)~x-yCzZ%x and B(x, y)=x*Ty define nonsingular 
symmetric bilinear forms on G and 

(1) A(x,Ty)-B(x,y). 

Browder and Livesay [ l ] define a quadratic form <̂>: G—>Z2 

(if XELG is represented by an immersed sphere <r in general position 
with respect to TV, then yf/o(x) is 1 if and only if <rC\T<r consists of an 
odd number of pairs of points). One can also define [7] another qua-

1 Partially supported by NSF Grant GP 3685. 
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dratic form /*0: G~*Z<L by p<*(x® 1) =*\x-x mod 2, where xÇzH2k(N, Z). 
(x-x is always even). We have [ l ] , [7] 

(2) ^0(*) = MTx), Mo(̂ ) * v»(Tx); 

(3) fo(x) - 0 

if x can be represented by an immersed sphere <r disjoint from TV; 

^o(^ + y) = ^o(#) + ^o6>) + B(x, y), 
(4) 

MO(# + y) = MO(#) + Mo(:y) + -4(#, ?)• 

Let GT = G/(l + T)G. By (1) and (2), we can define following [7], 
a pairing C: Gr ® GT~->Z2 and a quadratic form /xr: GT~-*Z% by setting 

(5) C(£, J) = A(x, y) + 5(#, y), ixT{$) = #<>(#) + ifo(*), 

where x, yÇiG represent x, yÇzGr. Clearly 

(6) fxT(x + y) = Mr(^) + w(y) + C($, y). 

Let iA: G = H2k(N, Z«)-*H%k(A, Z%), iB: G->H2k(B, Z2). Then 
G = Ker iA®Ker iB. 

(7) T Ker Û = Ker iB 

and (see [ l]) 

(8) B is nonsingular on Ker iAl 

(8') ,4(#, y) = 0 for a ; , y £ Ker*A. 

Moreover, 

(9) Mo(̂ ) = 0 if x G Ker iAf 

since *=;y<g>l, ;yGKer(.ff2A;(iV, Z)-*Hn(A, Z)) and ;y-;y = 0. By (7) 
Ker iA maps isomorphically onto GT and by (8) and (8') C is non-
singular. Let eu • • • , e», fit - - - > /nGKer i^ be a symplectic basis 
for B\ Ker i^. Then êi, • • • , ë», Ji, • • • , JnÇzGT form a symplectic 
basis for C and (5) and (9) imply 

(10) c(2, T) = 2i$o(ei)fo(fi) - Gr =* 2*/*(*)»(?<)• 

The advantage of the identity c(2, T)=CT is that Cr is independent 
of the choice of the symplectic basis ëit JiÇzGr [7], whereas c(2, T) 
is independent of the choice of the characteristic submanifold N [ l ] . 

2. The involution T. We shall follow here a construction described 
in [6]. Let S2k+1 CR2k+1 be the unit sphere 11x11=1, where x 
= (*o, x, • • • , X2H-1) and let £ 2*CSW" 1 be the "meridian" ^ + î = 0. 
Define the rotation />: S2*+i_*sa*+i 
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p(x0, Xi, • • • , X2k+l) = (#0, — #U • ' * > ~~^2*+l) 

with fixed points P = (l, 0, • • • , 0) and Q = ( - l , 0, • • • , 0); p(S2k) 
= S2*. Let X: [ - 1 , l]->[0, l ] =7 be a C00 function such that \(s) = 0 
for s a e and X(s) = 1 for s ^ —€. Define 

X C S2*+1 X S2*+1 X I 

to be the set of points (x, y, 0) such that d(x, y)èe (where d is the 
natural Riemannian metric of S2*+1) and 

X' C S2k+1 X S2k+1 X / 

the set of points (x, y, X(#o)) such that d(x, p(y)) ^c . Both X and X' 
are diffeomorphic to the total space of the disk tangent bundle of 
S2**1 and Xr\X' is a neighborhood of (P, P, 0). Let F = X U X ' . 
Define the involution T: Y—»F by 

r(*,y,fl = (p(*),p(y),0. 

Then the only fixed points of T are (P, P, 0), ((?, Ç, 0) and ((?, <?, 1). 
After straightening the corners (this can be done in a way compatible 
with T)> Y becomes a differentiate manifold with boundary S =24*+1 

where S is the Kervaire homotopy sphere and T\ 2 has no fixed points. 
However, since the presence of corners does not affect the value of 
c(2, T) we shall continue to use the initial explicit description of Y 
and of 2 =dF. 

Let VC Y be the set of (*, y,t)&Y such that xGS2k. Then TV=V 
and F is a (4fe + l)-manifold with dV^N=Xr\V. Let also R 
= {(*, y, t)\x2k+i^0}. Then Y^RKJTR, V^RHTR. Finally, if 
.4=2f\R, 5 = 2 n r P , then S = 4 U 5 , N = AC\B, so that N is a 
characteristic manifold for (2, T). 

Let WQ V be the set of (x, y, t), x, yE.S2k. Then W consists of two 
copies of the tangent disk bundle of S2k, "plumbed" together in a 
neighborhood of (P, P, 0). The only non vanishing reduced homology 
group of W is H2k(W, Z) ~Z+Z; the two generators e, ƒ are repre­
sented by the imbeddings S2k-*W by (x, x, 0) and (x, p(x)} X(#0)), 
xÇzS2k. The intersection coefficients are 

(11) « . , - ƒ . ƒ - 2 , , . ƒ - ! . 

For y£S2k+1 such that d(S2As, ^)ge, let p(y)&S2k be the point in 
which the great circle through y orthogonal to S2k meets S2k. Let 
W'CdV^N be the set of (*, y, t)EN with :y2*+i = 0 and TT'CN the 
set of (#, y, J)£iV with 3^+1 = 0- Then the correspondence (x, y, t) 
—»(#, p{y), t) is a homeomorphism of W' and of IF" onto TF. More-
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over, N= W'UW", dW= WC\W" and TW' - W". In other words N 
is the double of W and T maps one copy of W onto the other. 

3. Computation of c(2, T). Lefschetz duality and the exactness of 
the homology sequence of the pair (W,dW), together with (11), imply 
that Hi(dW, Z ) = 0 , *V0, 2 f t - 1 , 4 f t -1 and that H2k^(dW)^Z,. 
Therefore the inclusion 

(12) j : H»(W', Z2) 0 H»{W", Z2) Z H2k(N} Z2) = G 

is an isomorphism (which preserves intersections). By (11) and (12), 
G has a basis e', f, Te', Tf represented by e, ƒ in W and their images 
by T in W" and 

(13) A{S,f) = 1, A(e', e') - i t ( f , ƒ ) - 0 

and clearly 

(14) B(e',f) = B(e', e') = 5 ( / ' , ƒ') = 0. 

Moreover, since |^-e = i / , * /= l , 

(15) /xo(e') = MO(/0 - 1, 

whereas (3) implies that 

(16) Me') = W ) = 0. 

As a consequence of (13) and (14) the images ê, JE.GT of e', ƒ form 
a symplectic basis of GT with respect to C and (15) and (16) imply 
that fxT(e) =/*r(7) = 1 so that by (10) 

*(2 , T) = Cr = 1. 

REMARK 1. Since 6Po = 6Pi4 = 0 [4], [ô] and also iPao^O (by the 
recent work of Browder), there are fixed point free involutions with 
Arf invariant 1 on S5, S13 and S29. 

REMARK 2. I t would be interesting to know what the relation is 
between the T: 55-»55 constructed in this paper and the nonstandard 
involution on Sb described in [2]. However, it follows from [8] that 
our involution is equivalent to a generator of the group Z4 of fixed 
point free involutions on 56. 

After this paper has been completed, the author learned that the 
existence of differentiable involutions on a homotopy sphere 24*+1 

for all ft with c(S, T)?*Q has been proven by an entirely different 
method by W. Browder (not yet published). Such an example on 
S9 was also obtained by D. Sullivan. 
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Added in proof. A PL-classification of fixed point free involutions 
analogous to that of [8], which also implies the existence of PL-
involutions with c(2, r ) = 0 has been obtained independently by 
S. Lopez de Medrano (to appear in the Proceedings of the Tulane 
Conference on Transformation Groups, 1967). 
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