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The classes of functions with period 2ir defined in terms of specific 
integrated Lipschitz conditions were characterized also in terms of 
degree of mean trigonometric approximation by Hardy and Little-
wood without proof, results proved later by Quade [ l ] , and still later 
supplemented by Zygmund [2] in his study of smooth functions. 
Analogs on approximation by complex polynomials of these results 
are due to Walsh and Russell [3]. The relative inclusion properties 
of these classes are difficult to treat directly, but certain results can 
be readily obtained by means of polynomial approximation proper­
ties, as is the purpose of this note to indicate. 

A function ƒ(w) analytic in \w\ < 1 is said (Hardy) to be of class 
Hp (p>l) there if the pih power norms oif{rei4>) with r fixed are uni­
formly bounded for 0 <r < 1 ; under these conditions, boundary values 
f(eiif>) for approach "in angle" as r—>1 exist for almost all 0, and 
Jl*\f(e**)\vd<l> exists. A function f{z) analytic in the interior of an 
analytic Jordan curve C in the s-plane is of class Hp (p > 1) there if its 
transform is of class Hp when the interior of C is mapped onto \w\ < 1. 
Such a function is of class Hp(k, a) on C, p>l, 0 < a < l , provided 
ƒ<*> (z) exists on C and 

a) /ciA*+*)-A*)n*i ^ i * r 
where 5 indicates arc length on C and fiw (s) is the &th derivative of 
f(z) with respect to 5 on C. Here and below A represents a constant 
independent of 5 and 0 which may change from one inequality to 
another. The Zygmund condition for a = 1 replaces (1) by 

(2) f I ƒ»(, + h) +f?\s -h)- 2ff\s) H dz\ g A \h\P, p> 1, 
Jc 

and defines functions (of class Hp) of class Hp(k} 1). 
An analog [3] of the results on trigonometric approximation al­

ready mentioned is 
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THEOREM 1. If C is an analytic Jordan curve in the z-plane, then a 
necessary and sufficient condition that f(z) be of class Hp(k, a) on C is 
that there exist polynomials pn(z) of respective degrees n in z such that 
(P>D 

(3) f | ƒ(*) - pn(z) \p\dz\ g Ax/n^^\ 0 < a g l , k^O. 
J c 

We have shown elsewhere [4], by study of the polynomial series 
involved, that (3) implies (Kp<q^ <*>) 

(4) f | f(z) - pn(z) \*\dz\ S At/n****™*", 
J c 

which by Theorem 1 implies that f(z) is of class Hq(\j3], ]8— [/3]) on C, 
where [/3] denotes the largest integer less than /3, where (3 = k+a 
— 1/p + l/q, and we suppose /3>0. Consequently we have our main 
result: 

THEOREM 2. If f(z) is of class Hp(k, a) on the analytic Jordan curve 
C, p>\, k^O, 0 < a ^ l , then f (z) is also of class i?«([j3], / 3 - [/3]) on C 
provided /3 = k+a — l/p + l/q>0 and Kp<q^ oo. 

Of course, when a function is defined by an integral it may be 
defined arbitrarily on a set of measure zero; here ƒ(k)(z) [or ƒ(*~1)(z) ] 
may be defined as continuous on C if a> 1/p [or k>0]. 

Theorems 1 and 2 can be modified [4] so as to remain valid for a 
function ƒ(z) defined merely on C. We say that a function f(z) defined 
on C and satisfying (1), or (2), is of class Lp(k, a) according as 0 < a < l 
or ce=l . We replace the polynomials in (3) and (4) by polynomials 
pn(z, 1/z) of respective degrees n in z and 1/z, where the origin O lies 
interior to C. Theorem 1 as modified asserts that (3) as modified is 
necessary and sufficient that ƒ (z) belong to Lp(k, a) on C. Theorem 2 
as modified asserts that if f(z) is of class Lp(k, a) on C, p>l, k*zO, 
0 < a < l , then f{z) is also of class L3([j8], j3—[j3]) on C provided 
f3 = k+a — l/p + l/q>0 and l < £ < g ^ o o . In particular, if C is the 
unit circumference | z \ = 1, a polynomial pn(z, 1/z) of degree n in z and 
1/z is also a trigonometric polynomial in <£ = arg2 of order n, and 
conversely. So the hypothesis of modified Theorem 2 refers on C only 
to classes Lp(k> a ) ; it shows that if fie1*) {necessarily with period 2ir) 
is of class Lp(k, ce) on C: \z\ = 1 with respect to 0, then j?(ei<f>) is also of 
class Lq([P], j3— [/?]) on C with respect to <f>, where P = k+a — l/p 
+ l/q>0, l < £ < 2 g o o . 
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