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The behavior of solutions of an ordinary differential equation 

(E) dx/dt =f(t,x), 

where/ : U—>Rn is continuous on the open set UC.RXRn, is frequently-
studied by means of a continuous function V: U—*R. I t is sometimes 
unnecessary to know the solutions explicitly. If for example V is 
independent of /, V(xo) = 0 for some #o, V(x)>0 for XT^X^ and if for 
each solution <f> of (E), V(</)(t)) is a monotonically decreasing function 
of t for t^Oy then x0 is a stable critical point of (E). For V a, C1 func­
tion, Liapunov defined 

d 
V(t, x) = — V(t, x) + <grad, V(t, *),ƒ(/, *)> 

at 

where ( •, • ) denotes the inner product in Rn. He observed that for any 
solution 0, 

V(f, *(Ô) = dV(t, <Kt))/dt; 

hence the rate of change of V(t, <t>(t)) can be calculated directly from 
F and ƒ without knowing the solutions when F i s a C1 function. Some­
times a likely function V is not C1, and for converse theorems fre­
quently the most difficult problem is proving V can be chosen to be 
a smooth function. A theory was thus developed for FGC° ( V locally 
Lipschitz in x) primarily by Yoshizawa [2, p. 4] with earlier results 
by Okamura [ l ] . We will mean by </>(• ; to, x0) that 0 is a solution of 
(E) such that <f>(to) =x 0 . When we refer to the domain of 0, we will 
assume that </> cannot be extended to a larger domain and still be a 
solution. Define for a solution cj> =<£(• ; t, x) 

(1) V'(t, x) - lim inf r-i[V(t + r, <f>(t + r)) - V(t, *(/))], 
T-++0 

(2) V(t, x) = lim inf rl[V(t + r, x + rf(t, %)) - V(t, x)]. 

In (1) and (2) we use the so-called lower right-hand Dini derivate. 
For F £ C ° , if W is a continuous real-valued function and V(t, x) 
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2g W(t, x) for one of the Dini dérivâtes, then the inequality will hold 
for all four Dini dérivâtes so it makes no difference which Dini deri­
vate is used. In our development "lim inf, r—>+0" is better than any 
other derivate. 

If F is C°, then V'(t, x) does not depend on the particular solution 
chosen and in fact V'(t, x) = V(t, x). For F only a continuous function, 
V'(t, x) does depend on the particular solution through (/, x) so when 
we write Vr(t, 0 (0) * it will be implicit that V' is evaluated with re­
spect to 0. We have found examples with the following behaviors 
when F is only continuous: 

(1) F== 0 on U and yet there exists a solution 0 such that F'(/, 0(0) 
s 1 for tER (or we may have F'(/, 0(0) s - 1 for tER). 

(2) F = 0 on U and yet there exists a point XQ such that for every 
solution 0 of (E) with 0(0) =x0t we have Vf(t, 0(0) = 1 for all t^O (or 
we may have = —-1 for all t^O). 

(3) Solutions of (E) unique and V'(tt 0(0) ^ 0 for all / and all solu­
tions 0 and yet there exists a solution 0 such that V(t, 0(0) = 1 for 
all tER. 

Because of the above examples, Theorem 1, which is apparently 
new, is perhaps the best result that can be obtained when F is con­
tinuous but not necessarily C°. 

THEOREM 1. If W: U-*R is continuous and V(t, x) ^ W(t, x) for all 
(t, x) E U, then for each (to, x0) E U there exists a solution 0 = 0( • ; to, Xo), 
such that for all t è to in the domain of 0, 

F'(/,0(/)) S TF(/,0(O). 

One main purpose of this note, however, is to introduce another 
derivate F of F which allows nearly the entire Liapunov theory of 
C° Liapunov functions to hold for F which need only be continuous. 
Let \y\ denote the norm of yERn- Define 

V(t, x) - lim inf f-l[V(t + r, x + ry + rf(t, x)) - V(t, x)]. 
T-H-0;lif|-»0 

From the definition it follows that V^V and V^V (calculated 
along any solution). We can prove Theorem 1 is true with F replaced 
by v. From this and F g V' we have 

THEOREM 2. Let W: U—*R be continuous. Then the following two 
conditions are equivalent. 

(2.1) For all (to, XQ)EU, there exists a solution 0 = 0 ( « ; to, XQ) such 
that V'(t, 0 (0) â W(t, 0(0) for t è h in the domain of 0. 
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(2.2) V(t, x) S W(f, x) for all (/, x) G U, 

COROLLARY. If solutions are unique and V: U—*R is continuous^ 
V(tf x) ^Ofor all (t, x )GI7 iff for every solution 0, V(t, 4>(t)) is a mono-
tonically decreasing f unction f or t in the domain of</>. 

Theorem 1 follows immediately from Theorem 2, and it is not 
difficult to derive the corollary from Theorem 2. 

SKETCH OF PROOF OF THEOREM 2. For any (t0, x0)G U and e>0 we 

may choose r, y such that 0 < r < e , \y\ <e, and the line segment 
between (/0, #o) and (ti, xi) = (t0+rt Xo+Ty+Tf(to, x0)) lies in Uand 

r-l[V(h + r, xo + ry + rf(t0, x0)) - V(t0, x0)] - W(t0, x0) < e. 

By a sequence of such choices, (/o, #o), (h9 xi), • • * > (t» Xi), • • * , we 
may construct a piecewise linear "approximate" solution. The se­
quence {(tit Xi)} can be chosen so as not to have a cluster point in U. 
When the approximate solutions are properly chosen, some subse­
quence converges to a solution of (E) satisfying V'(t, 0(0) Û W(t, <j>(t)) 
for t^t0. ^ 

APPLICATION. The use of V rather than V will often allow better 
theorems with simpler proofs, particularly for converse theorems, as 
in the following application. 

We assume now that for somerj>0 the set DV= {(t, x): \x\ ^rj and 
ï*àO}CU. Following Strauss [3], we assume solutions of (E) are 
unique and we define 

DEFINITION. 0 is £p-stable (for (E)) if 0 is stable and if for all / 0 ^ 0 
there exists a S = ô(/0) > 0 such that 

ƒi oo 

| 4>(t; toy xQ) \*>dt < oo for all \ x0\ < 5. 
«o 

THEOREM 3. For any p>0 the following are equivalent. 
(3.1) There exists p, 7 ;>p>0, and a continuous positive definite 

function V: Z>p-*[0, oo) such that V(t, 0) = 0 and for somec>0 

V(t, x) g c | x | v for (/, x) G Dp. 

(3.2) 0 is SP-stdble. 

Theorem 3 is essentially due to Strauss [3] except that he did not 
have available Theorems 1 and 2. He showed that if F £ C ° , then 
(3.1) implies (3.2), and to conclude (3.1) and VÇ-C0 he had to assume 
(3.2) and ƒ G C1 and 

(3.3) For some p there exists a function \f/Çz£p on [0, oo) such that 
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I 0(t + to, /o, xo) | £ * (0 , for (/<>, XQ) GDp, t^ 0, 

where 0 is the matrix of partial derivatives </>Xo(t] h, x0). 
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