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For a ^ O , let L*(x) denote the Laguerre polynomial of degree n 
given by 

Ln{%) = (x e /nï)(d/dx) (x e ), n = 0, 1, • • • . 

We define the Laguerre difference operator Vn by 

Vnf(n) - (II + l)f(n + 1) - {In + a + l)/(n) + (» + «)ƒ(» - 1). 

Then the Laguerre difference heat equation is given by 

(*) V»« (»> t) « du(n9 t)/dt. 

A Laguerre temperature is a solution u(nf t) of (*) which is a C1 

function of /. The fundamental Laguerre temperature is the function 
g(n; t)=g(n, 0; /), where 

e * LÏ(x)Lm(%)dQ(x), t > 0, 
o 

with 

dü(x) = e~~xxadx. 

Corresponding to g(n, m; t) is its conjugate g(n*, m\ t) given by 

e x Ln(—x)Lm(x)dÇl(x), t > 0. 
o 

An important subclass of the class of Laguerre temperatures in­
cludes those Laguerre temperatures u(n, t) which satisfy the condi­
tion 

00 

u(n,f) = ]j£ g(n, m\ t — t')u(tn, t')p{rn)y p(m) = m\/T(m + a + 1), 
m=0 

for every t, /', 0 <tf <t, with the series converging absolutely. La­
guerre temperatures which belong to this subclass are said to have 
the Huygens property. The functions g(n, m\ t) have this property. 

1 The research of the first author was supported in part by the National Aero­
nautics and Space Administration under Grant NGR-14-008-009 and that of the 
second author by the National Science Foundation under Grant GP-7167 
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The Poisson-Laguerre transform of a function 0 is formed with the 
kernel g(ntm\ t) and is given by 

00 

u(n9 Ö = Z) g(n> m t)4>{m)p{m), 

whenever the series converges. Within its regions of convergence, 
the Poisson-Laguerre transform is a Laguerre temperature. 

The object of this paper is to summarize the principal results 
derived in the development of an inversion and representation theory 
for the Poisson-Laguerre transform. Details and proofs will appear 
in [1]. 

Basic to the development of the theory are the properties of the 
functions g(nt m\ /), g(n*, m; /), and quotients of these. For example, 
the fact that, for 0<£</o^i 1, g(n, m;t)/g(not m;t0) is a positive mono­
tone decreasing function of m for large m is a, determining factor in 
the convergence behavior of the Poisson-Laguerre transform given 
in the following result. 

THEOREM 1. If u(n, / )= ]Cm-og(w> m\ t)(t>(n)p(m) converges condi­
tionally f or (n0, Jo), no a nonnegative integer, 0<J0;S1, then it converges 
for alln = Ot 1, • • • , and t, 0<t^t0^l. 

Further, the boundedness of g(n*, m\ t)/g(n*t m; t0) as a function 
of m enables us to establish the following convergence for the conju­
gate transform. 

THEOREM 2. If u(n, t) = ]Cm-og(w> m\ t)<t>(m)p(m) converges abso­
lutely f or t = t0, 0 < / 0 ^ l , then so does 

00 

m=Q 

for 0 < / g / o g l . 

Similar considerations are needed to develop the following funda­
mental inversion result. 

THEOREM 3. Let X)m-o g(n> m\ t)<t>(m)p(m) converge for (n0, Jo), no a 
nonnegative integer, 0 </0 ^ 1. Then 

00 

lim 2 g(n> m\ t)<t>(m)p(m) = <l>(n). 

We have, in addition, a conjugate inversion formula. 
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THEOREM 4. Let u(n, t) = ]Cw«og(̂ > m\ t)<t>(m)p(m) converge abso­
lutely for (n0, to) t no a nonnegative integer, 0 </o â 1. Then 

00 

4>(n) = X) g(n*> w>\ t)u(tn*, t)p(m)y 

forO<t^t0^l. 

The fact that a nonnegative Laguerre temperature has the Huy-
gens property plays a central role in the characterization of Laguerre 
temperatures which can be represented by Poisson-Laguerre trans­
forms of nonnegative functions. We have the following representation 
theorem. 

THEOREM 5. A necessary and sufficient condition that 
00 

u(n, t) = X) g(ni m\ t)<t>(m)p(m) 
m-mO 

with <t>(m) nonnegative and the series converging for n = 0, 1, • • • , 
0<t<c is that u(n, t) be a nonnegative Laguerre temperature there. 
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