THE POISSON-LAGUERRE TRANSFORM

BY DEBORAH TEPPER HAIMO AND FRANK M. CHOLEWINSKI¹

Communicated by N. Levinson, September 21, 1967

For $\alpha \ge 0$, let $L_n^{\alpha}(x)$ denote the Laguerre polynomial of degree n given by

$$L_n^{\alpha}(x) = (x^{-\alpha} e^x/n!)(d/dx)^n (x^{n+\alpha} e^{-x}), \qquad n = 0, 1, \cdots.$$

We define the Laguerre difference operator ∇_n by

$$\nabla_n f(n) = (n+1)f(n+1) - (2n+\alpha+1)f(n) + (n+\alpha)f(n-1).$$

Then the Laguerre difference heat equation is given by

(*)
$$\nabla_n u(n, t) = \partial u(n, t) / \partial t.$$

A Laguerre temperature is a solution u(n, t) of (*) which is a C^1 function of t. The fundamental Laguerre temperature is the function g(n; t) = g(n, 0; t), where

$$g(n, m; t) = \int_0^\infty e^{-xt} L_n^{\alpha}(x) L_m^{\alpha}(x) d\Omega(x), \qquad t > 0,$$

with

$$d\Omega(x) = e^{-x}x^{\alpha}dx.$$

Corresponding to g(n, m; t) is its conjugate $g(n^*, m; t)$ given by

$$g(n^*, m; t) = \int_0^\infty e^{-xt} L_n^\alpha(-x) L_m^\alpha(x) d\Omega(x), \qquad t > 0.$$

An important subclass of the class of Laguerre temperatures includes those Laguerre temperatures u(n, t) which satisfy the condition

$$u(n,t) = \sum_{m=0}^{\infty} g(n, m; t-t')u(m, t')\rho(m), \qquad \rho(m) = m!/\Gamma(m+\alpha+1),$$

for every t, t', 0 < t' < t, with the series converging absolutely. Laguerre temperatures which belong to this subclass are said to have the Huygens property. The functions g(n, m; t) have this property.

¹ The research of the first author was supported in part by the National Aeronautics and Space Administration under Grant NGR-14-008-009 and that of the second author by the National Science Foundation under Grant GP-7167.

The Poisson-Laguerre transform of a function ϕ is formed with the kernel g(n, m; t) and is given by

$$u(n, t) = \sum_{m=0}^{\infty} g(n, m; t) \phi(m) \rho(m),$$

whenever the series converges. Within its regions of convergence, the Poisson-Laguerre transform is a Laguerre temperature.

The object of this paper is to summarize the principal results derived in the development of an inversion and representation theory for the Poisson-Laguerre transform. Details and proofs will appear in [1].

Basic to the development of the theory are the properties of the functions g(n, m; t), $g(n^*, m; t)$, and quotients of these. For example, the fact that, for $0 < t < t_0 \le 1$, $g(n, m; t)/g(n_0, m; t_0)$ is a positive monotone decreasing function of m for large m is a determining factor in the convergence behavior of the Poisson-Laguerre transform given in the following result.

THEOREM 1. If $u(n, t) = \sum_{m=0}^{\infty} g(n, m; t) \phi(n) \rho(m)$ converges conditionally for (n_0, t_0) , n_0 a nonnegative integer, $0 < t_0 \le 1$, then it converges for all $n = 0, 1, \dots, and t, 0 < t \le t_0 \le 1$.

Further, the boundedness of $g(n^*, m; t)/g(n^*, m; t_0)$ as a function of m enables us to establish the following convergence for the conjugate transform.

THEOREM 2. If $u(n, t) = \sum_{m=0}^{\infty} g(n, m; t) \phi(m) \rho(m)$ converges absolutely for $t = t_0$, $0 < t_0 \le 1$, then so does

$$u(n^*, t) = \sum_{m=0}^{\infty} g(n^*, m; t) \phi(m) \rho(m),$$

for $0 < t \le t_0 \le 1$.

Similar considerations are needed to develop the following fundamental inversion result.

THEOREM 3. Let $\sum_{m=0}^{\infty} g(n, m; t)\phi(m)\rho(m)$ converge for (n_0, t_0) , n_0 a nonnegative integer, $0 < t_0 \le 1$. Then

$$\lim_{t\to 0^+}\sum_{m=0}^{\infty}g(n,\,m;\,t)\phi(m)\rho(m)=\phi(n).$$

We have, in addition, a conjugate inversion formula.

THEOREM 4. Let $u(n, t) = \sum_{m=0}^{\infty} g(n, m; t) \phi(m) \rho(m)$ converge absolutely for (n_0, t_0) , n_0 a nonnegative integer, $0 < t_0 \le 1$. Then

$$\phi(n) = \sum_{m=0}^{\infty} g(n^*, m; t) u(m^*, t) \rho(m),$$

for $0 < t \le t_0 \le 1$.

The fact that a nonnegative Laguerre temperature has the Huygens property plays a central role in the characterization of Laguerre temperatures which can be represented by Poisson-Laguerre transforms of nonnegative functions. We have the following representation theorem.

THEOREM 5. A necessary and sufficient condition that

$$u(n, t) = \sum_{m=0}^{\infty} g(n, m; t) \phi(m) \rho(m)$$

with $\phi(m)$ nonnegative and the series converging for $n=0, 1, \cdots, 0 < t < c$ is that u(n, t) be a nonnegative Laguerre temperature there.

REFERENCES

- 1. F. M. Cholewinski and D. T. Haimo, *Laguerre temperatures*, Proc. Conf. on New Directions in Orthogonal Expansions and their Continuous Analogues, Southern Illinois University Press, 1968.
 - 2. I. I. Hirschman, Jr., Laguerre transforms, Duke Math. J. 30 (1963), 495-510.

SOUTHERN ILLINOIS UNIVERSITY, EDWARDSVILLE, AND CLEMSON UNIVERSITY