ON THE GEOMETRIC THEORY OF FUNCTIONS MEROMORPHIC IN A DISC¹

BY J. E. MCMILLAN

Communicated by Maurice Heins, July 25, 1967

Let w=f(z) be a nonconstant meromorphic function defined in the open unit disc D, and let W denote the extended w-plane. Let $N(w, \delta)$ denote the set of all points of W at a chordal distance less than δ from w ($\delta > 0$), and define a closed set $B \subset W$ as follows: $w \in B$ if and only if $w \in W$ and for any $\delta > 0$ there exist $N(w_0, \delta_0) \subset N(w, \delta)$ and a component U of the preimage $f^{-1}(N(w_0, \delta_0))$ such that f(U) is not dense in $N(w_0, \delta_0)$.

THEOREM 1. Suppose that V is a domain contained in the complement of B and that U is a component of $f^{-1}(V)$. Then one of the following two statements holds:

- (i) For any $w \in V$ there exists $\delta > 0$ such that $U \cap f^{-1}(N(w, \delta))$ is relatively compact (in D).
- (ii) For any $w \in V$ either there exists a continuous curve α : z(t), $0 \le t < 1$, lying in U such that $|z(t)| \to 1$ and $f(z(t)) \to w$ as $t \to 1$, or there exists $\delta > 0$ such that infinitely many relatively compact components of $f^{-1}(N(w, \delta))$ are contained in U.

The proofs of the results stated in this note will appear in a forth-coming paper.

A point $w \in W$ is called an asymptotic value of f provided there exists a continuous curve $\alpha \colon z(t)$, $0 \le t < 1$, lying in D such that $|z(t)| \to 1$ and $f(z(t)) \to w$ as $t \to 1$, and if in addition $z(t) \to e^{i\theta}$, then f is said to have the asymptotic value w at $e^{i\theta}$. Define a set $\Gamma_p \subset W$ as follows: $w \in \Gamma_p$ if and only if $w \in W$ and there exists $e^{i\theta}$ such that f has the asymptotic value w at $e^{i\theta}$. For any set $S \subset W$, let $A(S) = \{e^{i\theta} \colon \text{there exists } w \in S \text{ such that } f \text{ has the asymptotic value } w \text{ at } e^{i\theta} \}$.

THEOREM 2. Suppose that $w \in B$. Then for any $\delta > 0$, $A(N(w, \delta))$ has positive Lebesgue measure (in $[0, 2\pi]$) and $\Gamma_p \cap N(w, \delta)$ has positive linear measure.

We use the definition of linear measure that is given in terms of coverings by discs. The measurability of $A(N(w, \delta))$ and Γ_p is proved in (7).

¹ Supported partially by National Science Foundation grant GP-6538.

THEOREM 3. Suppose that V is a component of the complement of B. Then one of the following two statements holds:

- (1) There are at most finitely many components U of $f^{-1}(V)$, each of which satisfies (i). In particular, f assumes as a value every point of V the same finite number of times n, multiplicities counted as usual (possibly n=0).
- (2) For any $w \in V$, either w is an asymptotic value of f, or the following holds: There exists $\delta > 0$ such that $f^{-1}(N(w, \delta))$ has infinitely many relatively compact components, and in particular f assumes as a value every point of $N(w, \delta)$ infinitely many times.

Moreover, if in case (2) we let $n = +\infty$ (in this case each point of a residual subset of V is assumed by f infinitely many times), then any (curvilinearly) accessible boundary point of V that is assumed by f less than n times ($1 \le n \le +\infty$), multiplicities counted as usual, is an asymptotic value of f.

Let Γ denote the set of all asymptotic values of f. The global cluster set C and the range of values R are defined as follows: $w \in C$ if and only if $w \in W$ and there exists a sequence $\{z_n\} \subset D$ such that $|z_n| \to 1$ and $f(z_n) \to w$. $w \in R$ if and only if $w \in W$ and there exists a sequence $\{z_n\} \subset D$ such that $|z_n| \to 1$ and $f(z_n) = w$. Let int R denote the interior of R. We also define F to be the set of all $w \in W$ that satisfy the conclusion of Theorem 2. Then F is closed and by Theorem 2, $B \subset F$. Thus as a consequence of Theorem 3 we have the following result.

COROLLARY. C-F is open, and the following two equivalent inclusions hold:

$$C - F \subset \Gamma \cup \text{ int } R$$
; $C - \text{ int } R \subset \Gamma \cup F$.

Moreover, any accessible boundary point of C-F that is not in R is in Γ .

Let V denote a domain contained in W, and suppose that U is a component of $f^{-1}(V)$. Define sets R(U) and F_c as follows: $w \in R(U)$ if and only if $w \in V$ and $U \cap f^{-1}(\{w\})$ is infinite. $w \in F_c$ if and only if $w \in W$ and for any $\delta > 0$, $A(N(w, \delta))$ has positive Lebesgue measure (in $[0, 2\pi]$) and $\Gamma_p \cap N(w, \delta)$ contains a closed set of positive (logarithmic) capacity. Then F_c is closed and $B \subset F \subset F_c$.

THEOREM 4. If $V \cap B = \emptyset$, then either (i) holds or V - R(U) contains no (nondegenerate) continuum. If $V \cap F = \emptyset$, then either (i) holds or V - R(U) has linear measure zero. If $V \cap F_c = \emptyset$, then either (i) holds or V - R(U) contains no closed set of positive capacity.

We conclude with a discussion of the relationship between our results and some earlier theorems. The inclusion C-int $R \subset \Gamma \cup F$ refines the inclusion C-int $R \subset \bar{\Gamma}$ given by Collingwood and Cartwright [2]. It improves their result $W-R\subset\Gamma$ under the assumption that Γ has linear measure zero, for we see that under the weaker assumption $F = \emptyset$, we have the stronger conclusion W-int $R \subset \Gamma$ (since C-F is open and $C\neq\emptyset$, C=W if $F=\emptyset$). If f is bounded and has radial limits of modulus one at almost all $e^{i\theta}$, then it is an immediate consequence of Theorems 2 and 3 that $B = F = \{ |w| = 1 \}$, and we see that the corollary sharpens a theorem of Seidel [9] (see also Frostman [3]). Let us now consider the less restrictive case where fis only assumed to have an asymptotic value at each point of a set on $\{|z|=1\}$ of measure 2π . Let E be a closed subset of W such that for almost all $e^{i\theta}$, f has an asymptotic value at $e^{i\theta}$ that is in E. By Bagemihl's ambiguous-point theorem [1], $F \subset E$ (also $F_c \subset E$), and we see that our results contain some theorems of Lehto [4] and Lohwater [5]. Our results also contain theorems of Noshiro [8], Stoïlow [10], and McMillan [6].

REFERENCES

- 1. F. Bagemihl, Curvilinear cluster sets of arbitrary functions, Proc. Nat. Acad. Sci. U.S.A. 41 (1955), 379-382.
- 2. E. F. Collingwood and M. L. Cartwright, Boundary theorems for a function meromorphic in the unit circle, Acta Math. 87 (1952), 83-146.
 - 3. O. Frostman, Potentiel d'équilibre et capacité des ensembles, Thèse, Lund, 1935.
- 4. O. Lehto, Value distribution and boundary behavior of a function of bounded characteristic and the Riemann surface of its inverse function, Ann. Acad. Sci. Fenn. Ser. A I 177 (1954), 1-46.
- 5. A. J. Lohwater, The boundary values of a class of meromorphic functions, Duke Math. J. 19 (1952), 243-252.
- 6. J. E. McMillan, Asymptotic values of functions holomorphic in the unit disc, Michigan Math. J. 12 (1965), 141-154.
- 7. ———, On local asymptotic properties, the asymptotic value sets, and ambiguous properties of functions meromorphic in the open unit disc, Ann. Acad. Sci. Fenn. Ser. A I 384 (1965), 1-12.
- 8. K. Noshiro, Contributions to the theory of singularities of analytic functions, Japan. J. Math. 19 (1948), 299-327.
- 9. W. Seidel, On the distribution of values of bounded analytic functions, Trans. Amer. Math. Soc. 36 (1934), 201-226.
- 10. S. Stoilow, Les propriétés topologiques des fonctions analytiques d'une variable, Ann. Inst. H. Poincaré Sect. A 2 (1932), 233-266.

University of Wisconsin-Milwaukee