PROOF. Let $G = \sum \{G_n | n \in J\}$ where G_n is solvable of radical class n. Then $G \in \mathfrak{G}$ and has radical class ω . Let $H = \prod \{H_k | k \in J, H_k \simeq G\}$. H has a subgroup satisfying the hypothesis of Theorem 3. Hence $H \in \mathfrak{L}$. Consequently, $H \in \mathfrak{G}$.

Classes of groups satisfying the conditions of Theorems 4 and 5 include the classes SN^* , SI^* , subsolvable and polycyclic.

BIBLIOGRAPHY

- 1. P. Hall, On non-strictly simple groups, Proc. Cambridge Philos. Soc. 59 (1963), 531-553.
- 2. J. I. Merzulakov, On the theory of generalized solvable and nilpotent groups, Algebra i Logika Sem. 2 (1963), 29-36. (Russian)
 - 3. B. I. Plotkin, Radical groups, Amer. Math. Soc. Transl. (2) 17 (1961), 9-28.
 - 4. W. R. Scott, Group theory, Prentice Hall, Englewood Cliffs, N. J., 1965.

University of Kansas

ALGEBRAIZATION OF ITERATED INTEGRATION ALONG PATHS¹

BY KUO-TSAI CHEN

Communicated by Saunders Mac Lane June 12, 1967

If Ω is the vector space of C^{∞} 1-forms on a C^{∞} manifold M, then iterated integrals along a piecewise smooth path α : $[0, l] \rightarrow M$ can be inductively defined as below:

For $r \ge 2$ and $w_1, w_2, \cdots, \in \Omega$,

$$\int_{\alpha} w_1 \cdot \cdot \cdot w_r = \int_0^1 \left(\int_{\alpha^t} w_1 \cdot \cdot \cdot w_{r-1} \right) w_r(\alpha(t), \dot{\alpha}(t)) dt$$

where $\alpha^t = \alpha \mid [0, t]$. (See [3].)

This note is based on the following algebraic properties of the iterated integration:

- (a) $(\int_{\alpha} w_1 \cdots w_r) (\int_{\alpha} w_{r+1} \cdots w_{r+s}) = \sum \int_{\alpha} w_{\sigma(1)} \cdots w_{\sigma(r+s)}$ summing over all (r,s)-shuffles, i.e. those permutations σ of $\{1, \cdots, r+s\}$ with $\sigma^{-1}(1) < \cdots < \sigma^{-1}(r), \ \sigma^{-1}(r+1) < \cdots < \sigma^{-1}(r+s).$
 - (b) If $p = \alpha(0)$ and if f is any C^{∞} function on M, then

$$\int_{\alpha} fw = \int_{\alpha} (df)w + f(p) \int_{\alpha} w.$$

¹ The work has been partially supported by the National Science Foundation under Grant NSF-GP-5423.

(c) If β is a piecewise smooth path starting from the end point of α , then

$$\int_{\alpha\beta} w_1 \cdot \cdot \cdot w_r = \int_{\beta} w_1 \cdot \cdot \cdot w_r + \int_{\alpha} w_1 \int_{\beta} w_2 \cdot \cdot \cdot w_r + \cdot \cdot \cdot + \int_{\alpha} w_1 \cdot \cdot \cdot w_r.$$

The author wishes to thank Professor S. Mac Lane for valuable suggestions.

1. Let K be a commutative unitary ring and Ω a K-module. Elements of Ω will be denoted by w, w_1 , w_2 , \cdots . Let $T(\Omega) = \bigoplus_{r \geq 0} T^r(\Omega)$ be the tensor K-algebra based on Ω . For u, $v \in T(\Omega)$, we shall write $uv = u \otimes v$.

Define the shuffle multiplication \circ of $T(\Omega)$ by $(w_1 \cdots w_r)$ $\circ (w_{r+1} \cdots w_{r+s}) = \sum w_{\sigma(1)} \cdots w_{\sigma(r+s)}$ summing over all (r, s)-shuffles σ . Under the shuffle multiplication, $T(\Omega)$ becomes a commutative unitary K-algebra denoted by Sh (Ω) . (See [6].) Moreover Sh (Ω) has a comultiplication ζ given by

$$\zeta(w_1 \cdot \cdot \cdot w_r) = \sum_{0 \leq i \leq r} (w_1 \cdot \cdot \cdot w_i) \otimes (w_{i+1} \cdot \cdot \cdot w_r).$$

Here we set $w_1 \cdot \cdot \cdot w_r = 1$ when r = 0. Let $\epsilon \in \operatorname{Hom}_K(T(\Omega), K)$ be such that $\epsilon 1 = 1$ and $\epsilon T^r(\Omega) = \{0\}$ for $r \ge 1$. With the comultiplication ζ and the counit ϵ , Sh (Ω) is a Hopf K-algebra which may be taken as a dualization of the tensor (Hopf) algebra with the diagonal map as comultiplication.

2. For any commutative unitary K-algebra A, it will be required that the canonical map $K \rightarrow A$ is injective. For any A-module Ω , it will be required that 1w = w. We say that $d \in \operatorname{Hom}_K(A, \Omega)$ is a differentiation (of A) if d(fg) = gdf + fdg, $\forall f, g \in A$. If A' is also a commutative unitary K-algebra, denote by Alg (A, A') the set of morphisms $A \rightarrow A'$ of unitary K-algebras.

Denote by $\mathfrak D$ the category of "pointed" differentiations of K-algebras: The objects of $\mathfrak D$ are pairs (d, p), where $d: A \to \Omega$ is a differentiation and $p \in Alg(A, K)$. If (d', p') with $d': A' \to \Omega'$ is also an object of $\mathfrak D$, the set of morphisms $(d, p) \to (d', p')$ will be denoted by Diff (d, p; d', p') which consists of the pairs $(\tilde{\phi}, \hat{\phi}), \tilde{\phi} \in Alg(A, A'), \hat{\phi} \in Hom_K(\Omega, \Omega')$ such that $\hat{\phi}d = d'\tilde{\phi}, \hat{\phi}(fw) = (\tilde{\phi}f)(\hat{\phi}w), \forall f \in A, w \in \Omega$, and $p = p'\tilde{\phi}$.

3. For any K-module Ω , one may regard Sh $(\Omega) \otimes \Omega$ as an Sh (Ω) -module. Define $\delta = \delta(\Omega)$: Sh $(\Omega) \rightarrow$ Sh $(\Omega) \otimes \Omega$ such that $\delta 1 = 0$ and $\delta(w_1 \cdot \cdot \cdot w_r) = (w_1 \cdot \cdot \cdot w_{r-1}) \otimes w_r$, $r \ge 1$. Then δ is a surjective differentiation, and Sh $(\Omega) = \ker \epsilon \oplus \ker \delta$. Write $\epsilon = \epsilon(\Omega)$. The pair (δ, ϵ) can be characterized by the next theorem.

THEOREM 1. Let (d', p') with $d': A' \rightarrow \Omega'$ be an object of \mathfrak{D} such that d' is surjective and $A' = \ker d' \oplus \ker p'$. Then, given any $\theta \in \operatorname{Hom}_K(\Omega, \Omega')$, there exists a unique $(\tilde{\theta}^{\sharp}, \hat{\theta}^{\sharp}) \in \operatorname{Diff}(\delta, \epsilon; d', p')$ such that $\theta = \hat{\theta}^{\sharp}\iota$, where $\iota: \Omega \rightarrow \operatorname{Sh}(\Omega) \otimes \Omega$ is given by $\iota(w) = 1 \otimes w$.

4. An ideal J of A is said to be a d-ideal if $dJ = AdJ + J\Omega$. If J is a d-ideal, then d induces a differentiation $d_J: A/J \rightarrow \Omega/dJ$.

PROPOSITION. Let $p \in \text{Alg } (A, K)$. If I = I(d, p) is the K-submodule of Sh (Ω) generated by $u(fw)v - (u \circ df)wv - (pf)uwv$, $\forall u, v \in \text{Sh } (\Omega)$, $w \in \Omega$, $f \in A$, then I is the smallest δ -ideal of $\text{Sh}(\Omega)$ that contains all fw - (df)w - (pf)w.

It follows that δ induces a surjective differentiation $\Delta = \Delta(d, p)$: Sh $(\Omega)/I \rightarrow$ Sh $(\Omega) \otimes \Omega/\delta I$. On the other hand, ϵ induces $\mathbf{E} = \mathbf{E}(d, p) \in \mathrm{Alg}$ (Sh $(\Omega)/I, K$) such that Sh $(\Omega)/I = \ker \Delta \oplus \ker \mathbf{E}$. The pair (Δ, \mathbf{E}) can be characterized by the next theorem.

THEOREM 2. Let

$$(\tilde{\chi}, \hat{\chi}) = (\tilde{\chi}(d, p), \hat{\chi}(d, p)) \in \text{Diff}(d, p; \Delta, E)$$

be given by $\tilde{\chi}f = pf + df + I$, $\forall f \in A$, and $\hat{\chi}w = 1 \otimes w + \delta I$. If (d', p') is as given in Theorem 1, then, for any $(\tilde{\theta}, \hat{\theta}) \in \text{Diff}(d, p; d', p')$, there exists one unique $(\tilde{\Theta}, \hat{\Theta}) \in \text{Diff}(\Delta, E; d', p')$ such that $(\tilde{\theta}, \hat{\theta}) = (\tilde{\Theta}\tilde{\chi}, \hat{\Theta}\hat{\chi})$.

5. DEFINITION. A *d*-path from p is an element $\alpha \in Alg$ (Sh (Ω) , K) such that $\alpha(I) = 0$. The end point of α is $q \in Alg$ (A, K) given by $qf = pf + \alpha(df)$, $\forall f \in A$.

Recall that ζ is the comultiplication of Sh(Ω). For α , $\beta \in Alg$ (Sh(Ω), K), define $\alpha\beta = (\alpha \otimes \beta)\zeta$. Then $\alpha\epsilon = \epsilon\alpha = \alpha$. It can be shown that Alg (Sh(Ω), K) is a group under the above multiplication.

THEOREM 3. If α and β are d-paths from p to q and from q to q' respectively, then $\alpha\beta$ is a d-path from p to q'; and α^{-1} is a d-path from q to p.

6. We say that A is d-connected if, for any p, $q \in Alg(A, K)$, there exists a d-path from p to q.

PROPOSITION. If A is d-connected and if p, $q \in Alg(A, K)$, then $(\Delta(d, p), E(d, p)) \cong (\Delta(d, q), E(d, q))$ in the category D.

978 K.-T. CHEN

PROPOSITION. If Alg (A, K) and Alg (A', K) are both nonempty, then $A \oplus A'$ is not $(d \oplus d')$ -connected.

There is a partial converse to the above assertion which states that if Alg(A, K) is the disjoint union of two nonempty sets such that there exists no d-path with its initial point in one of the sets and its end point in the other, then, under reasonable conditions, A is non-trivially imbedded in a direct sum.

PROPOSITION. If A is d-connected with nonempty Alg (A, K) and if d is surjective, then A is a d-tree, i.e. A has no closed d-path other than ϵ .

BIBLIOGRAPHY

- 1. M. Barr and G. S. Rinehart, Cohomology as a derived functor of derivations, Trans. Amer. Math. Soc. 122 (1966), 416-426.
- 2. K. T. Chen, Integration of paths, a faithful representation of paths by noncommutative formal power series, Trans. Amer. Math. Soc. 89 (1958), 395-407.
- 3. ——, Iterated path integrals and generalized paths, Bull. Amer. Math. Soc. 73 (1967), 935-938.
 - 4. S. Mac Lane, Homology, Springer-Verlag, New York, 1963.
- 5. J. W. Milnor and J. C. Moore, On the structure of Hopf algebra, Ann. of Math. 81 (1965), 211-264.
- 6. R. Ree, Lie elements and an algebra associate with shuffles, Ann. of Math. 68 (1958), 210-220.

STATE UNIVERSITY OF NEW YORK AT BUFFALO AND UNIVERSITY OF ILLINOIS