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The perturbation theory for an isolated eigenvalue Xn of a self-
adjoint operator L by a linear self-adjoint operator T$, depending an­
alytically or continuously on a parameter 0, has been successfully 
studied since the fundamental results of F. Rellich [lO]. In this note 
we state conditions on nonlinear perturbations N(u) that guarantee 
the validity of an analogue of Rellich's results. We then show how 
these results can be applied to qualitative problems in the study of 
real solutions of nonlinear elliptic partial differential equations and 
periodic solutions of autonomous ordinary differential equations. 

Our study is based on focussing attention on a set of nonlinear 
invariants for the perturbation problem. These invariants can be 
considered as a set of critical points of a functional defined on a one 
parameter family of Hubert manifolds without boundary dA R. 

The critical points are formulated in terms of the Ljusternik-
Schnirelmann category as in Palais [9]. We then show that these 
critical points are stable under the nonlinear perturbation considered. 

Previous studies of such nonlinear problems date back to E. 
Schmidt [ l l ] . Subsequent extensions were made by A. Hammerstein 
in [5], J. Cronin [4] and R. Bartle [ l ] among others. Topological 
methods for such problems were introduced by L. Ljusternik [8], 
J. Leray and J. Schauder [7], and M. Krasnoselskiï [ój. By narrowing 
the class of perturbations considered, we are able to obtain somewhat 
sharper results than these previous treatments. This research was 
partially supported by N.S.F. grant GP 3904 and U. S. Army (Dur­
ham) DA-ARO 31-124-G 156. The author is grateful to Professor 
J. Moser for helpful conversations in connection with this work. 

1. Formulation of the problem. Let L be a positive compact self-
adjoint operator mapping a real Hubert space H into itself. Then the 
operator equation u==\Lu has a countable number of eigenvalues Xn, 
each with finite multiplicity. Furthermore the following characteriza­
tion of Xn is valid, 

(1) Xn = max min(Lu, u) 
[T']n T' 
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where T' is an ^-dimensional subspace with elements u, normalized by 
||w|| = 1. [T']n is the class of all such subspaces T'QH for fixed integral 
n. We consider the effect on Xn of a perturbation by an operator N(u), 
not necessarily linear. Thus we consider the operator equation 
u=\(Lu+Nu) in the vicinity of X=Xn with ||w|| sufficiently small. 
Here we consider N(u), as depending on the parameter ||w||. 

2. Variational operators with symmetry. I t is well known, even in 
the linear case, that some restrictions must be imposed on the per­
turbation Nu to guarantee the validity of an analogue of Rellich's 
results. The major restrictions we impose are that the operator N(u) 
should be the gradient of some weakly continuous functional F(u) and 
that F(u) should be invariant under some group G. For linear prob­
lems this restricts the perturbations considered to be self-adjoint, and 
the associated quadratic functional is automatically invariant under 
the group Z2 generated by the antipodal map in H. For simplicity, 
we restrict attention to nonlinear problems invariant under the group 
Z2. More precisely, we assume: 

(i) \\Nu — NV\\ ^^{|h| |p~1+| |^ | |p~1}II^~ z ; l i wherep, k are constants 
independent of u, v for | |«| | , |Ji>|| sufficiently small p^ 1, 

(ii) N(-u) = -N(u), 
(iii) N maps weakly convergent sequences into strongly convergent 

sequences. 
(iv) ƒ01 (w, N(su))ds—fo (v, N{sv))dv=Jl (u—v, N(su + (l-s)v))ds. 
(Condition (iv) states that N is a gradient operator.) 

3. Results in Hilbert space. 

THEOREM 1. Let the operator N(u) satisfy conditions (i)-(iv) of §2. 
Suppose Xn is an eigenvalue of multiplicity p of the operator equation 
u—\Lu. Then the operator equation u—\(Lu+Nu) has at least p one 
parameter families of nontrivial solutions un(R), un+i(R), • • • , 
un+p-i(R), for sufficiently small Rf where %\\u\\2 = R, in the vicinity of 
X=Xn. Each solution can be characterized as a solution of a variational 
problem y 

(2) cn(R) = sup min — {Lu, u) + I (u, N{su))ds , 
[TU 7 L2 J o J 

where [T]n is an isotopy class of sets on d ^2R= {U/\\U\\2 = 2R}. Further­
more as R—>0, \n(R)—>Xn. 

REMARK 1. A similar result is valid for the operator equation of the 
form u+Nu=\Lu, as in [2]. 
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REMARK 2. The classes [T]n are defined as in [3], by the Ljus-
ternik-Schnirelmann category on d ^2R/ZZ. 

4. Application to nonlinear elliptic partial differential equations. 
Let G be a bounded domain in real ^-dimensional Euclidean space Rn 

with boundary dG. Let Dj = d/dxh ISjSn, Da= JIJD? with \a\ 
= cei+<22 • • • +ce„. Consider the Hubert spaces 

WmAG) = {u\D«uE L2(G), \a\ Sm}, 

Wm,2(G) = closure of C*(G) in TFm,2(G). 

In this context, Theorem 1 can be reformulated as a result on the 
bifurcation theory of elliptic partial differential equations. Indeed, if 
we consider a formally self-adjoint uniformly elliptic differential 
operator of order 2m 

Au= X) Da{aa^{x)D^u) 
l«l . | j9IS«» 

and an analogous operator Bu of order 2w —2, we may study the 
following eigenvalue problems: 

(3) Au = \(Bu + Nu), Dau \dG = 0, | a | g m - 1, 

where 

Nu = X) {-ï)WD«(Aa(%, u, • • • , D™~lu)): 

d _ 
(-l)l«ljD«(^a(a?, « , • • • , D^u)) = i4(x, « , • • • , Z>M~%) 

with 4̂ (x, — w, • • • , — jDm_1w)=^4(x, w, • • • , Dm-Xu). 

(3') Au = \Bu, Dau\dG*=0, \a\ ^ - 1 , 

We consider weak solutions of (3) in the Hubert space Wm,2(G). 
Under appropriate growth restrictions on the nonlinear term Nu 
(cf. [3]) and positivity conditions on the Dirichlet forms associated 
with A and B these weak solutions may be formulated in terms of an 
operator equation of the form u=\(Lu+Nu). Thus Theorem 1 ap­
plies directly to yield 

THEOREM 2. From each eigenvalue Xn of the linearized equation (3') of 
multiplicity p, there bifurcates at least p one parameter families of real 
solutions of the nonlinear equation (3). These solutions are smooth pro­
vided the coefficients of the equation and dG are sufficiently smooth. 

(The smoothness of the solutions mentioned in Theorem 2 is a 
consequence of Lp regularity for linear elliptic systems.) 
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5. Application to periodic solutions of autonomous systems of 
ordinary differential equations. We consider the equation 

(4) x = Ax + f(x) 

where x = (xi, • • •, xn) is a real n-vector of functions Xi(t), A is a con­
stant positive definite self-adjoint matrix and/(x)is an n-vector of its 
functions, holomorphic in some neighborhood of the origin beginning 
with quadratic terms in x. We assume f(x) is the gradient of some 
scalar function F(xi, • • •, xn) and that ƒ( —x) = —f(x). Furthermore 
we impose the following condition on the eigenvalues of A : 

ASSUMPTION N.D. If the eigenvalues of the matrix A are denoted 
M> ̂ 2» • • * » n̂» then n o r^tio of the form X|/X* should equal an integer 
for j , fe = l, 2, • • •, n (J9*k). 

Thus the following result of Lyapunov is a consequence of Theorem 
1. 

THEOREM 3. Under the above assumptions on the matrix A and the 
vector function ƒ(#), the equation (4) has at least n real one parameter 
families of nonzero periodic solutions. Furthermore if the minimal period 
of the jih family is denoted by Tj(R), then lim R+OTJ(R) =2W\\ 

For an analytical proof of this result, independent of the assump­
tion ƒ(-—x) = —ƒ(#), we refer to the book of C. L. Siegel [13]. The 
relevance of this parity assumption for the problem at hand is the 
following: 

CONJECTURE. Theorem 3 is valid independent of the assumption 
N.D. 
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EXTREMAL PROBLEMS FOR FUNCTIONS OF 
BOUNDED BOUNDARY ROTATION1 

BY BERNARD PINCHUK2 

Communicated by Alberto P. Calderón, April 19, 1967 

1. Preliminaries. Let Vk denote the class of analytic functions in 
Z>= {z: \z\ < l } which have there the representation 

(1) ƒ(*) = ƒ ' exp ( - ƒ 2T log(l - fe~*O#(0)) # 

where \f/(d) is a real valued function of bounded variation for 0 ^ 0 
<27T, satisfying there the conditions 

#(0) = 2, I | #(0) | ^ *. 
0 "0 

Vk is the class of analytic functions in D which have boundary rota­
tion bounded by kw. Thus, Vk consists of those functions f(z) 
= 2+a 2 z 2 + • • • which are analytic and satisfy f(z)92£0 in D, and 
map D onto a domain having boundary rotation bounded by kir. 

Briefly, the boundary rotation of a schlicht domain G with continu­
ously differentiate boundary curve is the total variation of the direc-

1 Research partially sponsored by the Air Force Office of Scientific Research, 
Office of Aerospace Research, U. S. Air Force, under AFOSR Grant No. AF-AFOSR 
1077-66. 

2 The author wishes to express his gratitude to Professor Harry E. Rauch for his 
many helpful conversations during this research. 


