SUBDIRECT PRODUCTS OF SEMIGROUPS AND RECTANGULAR BANDS

J. L. CHRISLOCK AND T. TAMURA¹

Communicated by Ivan Niven, May 5, 1967

Let $\{S_{\alpha}: \alpha \in A\}$ be a family of semigroups. If p_{α} is the natural projection from $\Pi\{S_{\alpha}: \alpha \in A\}$ onto S_{α} , then a subsemigroup D of $\Pi\{S_{\alpha}: \alpha \in A\}$ is called a subdirect product of $\{S_{\alpha}: \alpha \in A\}$ if $p_{\alpha}(D) = S_{\alpha}$ for all $\alpha \in A$.

If L and R are sets then the semigroup $B=L\times R$ with (λ_1, ρ_1) $\cdot (\lambda_2, \rho_2) = (\lambda_1, \rho_2)$ is called a rectangular band. Our main result, Theorem 1, determines all subdirect products of a semigroup S and a rectangular band B. Elements of $S\times B$ will be denoted by $(s; \lambda, \rho)$ $(s \in S, \lambda \in L, \rho \in R)$.

Proofs of the following results will appear elsewhere. See [1] for all undefined concepts.

THEOREM 1. Let S be a semigroup and $B = L \times R$ be a rectangular band. If \mathcal{L} is the set of all left ideals of S and \mathcal{R} is the set of all right ideals of S, then two mappings $\phi: L \to \mathcal{R}$ and $\psi: R \to \mathcal{L}$ satisfying

$$S = \bigcup \{\phi(\lambda) : \lambda \in L\} = \bigcup \{\psi(\rho) : \rho \in R\}$$

determine a subdirect product $D \subseteq S \times B$ by

$$D = \bigcup \{D(\lambda, \rho) : (\lambda, \rho) \in B\},\$$

where

$$D(\lambda, \rho) = \{(x; \lambda, \rho) : x \in \phi(\lambda) \cap \psi(\rho)\}.$$

Moreover, the correspondence $(\phi, \psi) \rightarrow D$ is one-to-one onto the set of all subdirect products of S and B.

One application of this theorem is

COROLLARY 1. Let S be a semigroup and $B = L \times R$ be a rectangular band. The only subdirect product of S and B is the direct product of S and B if and only if one of the following is satisfied:

- (i) S is right simple, and B is a left zero semigroup, $B \cong L$,
- (ii) S is left simple, and B is a right zero semigroup, $B \cong R$,
- (iii) S is a group, or
- (iv) B is trivial, |B| = 1.

¹ This result is partly supported by NSF GP-5988.

We now consider an isomorphism problem. Suppose D_i is a subdirect product of S_i and B_i (i=1, 2). If $D_1 \cong D_2$, what can we say about S_1 , S_2 , B_1 and B_2 ? When S_1 and S_2 are commutative we can conclude that $B_1 \cong B_2$ but not that $S_1 \cong S_2$. Restricting S_1 and S_2 further we have

THEOREM 2. For i=1, 2, let D_i be a subdirect product of a rectangular band B_i and a semigroup S_i which is commutative and reductive (ax = bx for all $x \in S_i$ implies a = b). If $D_1 \cong D_2$, then $B_1 \cong B_2$ and $S_1 \cong S_2$.

We also determine results concerning subdirect products of s-indecomposable semigroups. A semigroup S is s-indecomposable if any semilattice homomorphic image Y of S is trivial, |Y| = 1.

It can be proved (see [2] and [3]) that s-indecomposability is preserved by finite direct products, but examples can be given to show that this property is not preserved by either infinite direct products or finite subdirect products. As a special case we have

THEOREM 3. All subdirect products of a semigroup S and rectangular band are s-indecomposable if and only if S is s-indecomposable.

REFERENCES

- 1. A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, Math. Surveys, No. 7, Amer. Math. Soc., Providence, R. I., 1961.
- 2. Mario Petrich, Prime ideals of the Cartesian products of two semigroups, Czechoslovak. Math. J. 12 (1962), 150-152.
- 3. ——, The maximal semilattice decomposition of a semigroup, Math. Z. 85 (1964), 68-82.
- 4. T. Tamura, The theory of construction of finite semigroups. I, Osaka J. Math. 8 (1956), 243-261.
- 5. ——, Another proof of a theorem concerning the greatest semilattice-decomposition of a semigroup, Proc. Japan Acad. 40 (1964), 777-780.

University of California, Santa Cruz and University of California, Davis