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Let {Sa:aEA} be a family of semigroups. If p. is the natural
projection from II{S.,:aEEA} onto S, then a subsemigroup D of
I{S.:ac4 } is called a subdirect product of {Sa: a4 } if po(D) =S,
for all a & 4.

If L and R are sets then the semigroup B=LXR with (\1, p1)
+ (N2, p2) = (M, p2) is called a rectangular band. Our main result, Theo-
rem 1, determines all subdirect products of a semigroup .S and a rec-
tangular band B. Elements of SXB will be denoted by (s;\, p)
(s€S, NEL, pER).

Proofs of the following results will appear elsewhere. See [1] for all
undefined concepts.

THEOREM 1. Let S be a semigroup and B=LXR be a rectangular
band. If £ is the set of all left ideals of S and ® is the set of all right ideals
of S, then two mappings ¢: L— ® and Y: R—L satisfying

S =U{o(): A E L} = U{¥(): p € R}
determine a subdirect product DTSX B by
D =U{D®, p): (A p) € B},
where
D(\, p) = {(x;), 0): 2 € () N (o)}

Moreover, the correspondence (¢, ¢)—D 1is one-to-one onto the set of all
subdirect products of S and B.

One application of this theorem is

CoRrOLLARY 1. Let S be a semigroup and B=LXR be a rectangular
band. The only subdirect product of S and B is the direct product of S and
B if and only if one of the following is satisfied:

(1) S is right simple, and B is a left zero semigroup, B=L,

(i) S is left simple, and B is a right zero semigroup, B=R,

(iii) S s a group, or

(iv) B is trivial, | B| =1.
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We now consider an isomorphism problem. Suppose D; is a sub-
direct product of S; and B; (=1, 2). If D;=D,, what can we say
about 51, S;, B1 and B;? When S; and S; are commutative we can
conclude that Bi=2B, but not that S5;=2S,. Restricting S and .S, fur-
ther we have

THEOREM 2. For =1, 2, let D; be a subdirect product of a rectangular
band B; and a semigroup S; which is commutative and reduciive (ax =bx
for all xES; implies a =0b). If D1=2D,, then Bi=B; and S1=2S..

We also determine results concerning subdirect products of s-inde-
composable semigroups. A semigroup S is s-indecomposable if any
semilattice homomorphic image ¥ of Sis trivial, | V| =1.

It can be proved (see [2] and [3]) that s-indecomposability is pre-
served by finite direct products, but examples can be given to show
that this property is not preserved by either infinite direct products or
finite subdirect products. As a special case we have

THEOREM 3. All subdirect products of a semigroup S and rectangular
band are s-indecomposable if and only if S is s-indecomposable.
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