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Introduction. I have recently come across a rather extraordinary 
class of groups g while looking for a group of cohomological dimension 
1 which is not free. The groups G E g are generated by three elements 
a, b} c satisfying the single defining relation a = c~ia"1cia.c~%"~1c%: 

(1) G = (a, by c; a = <r%-Var-#~V£) (ij ^ 0), 

The purpose of this announcement is to make known the surprisingly 
similar behavior of these groups in 9 and the free group F of rank two. 

THEOREM. Every group G in g satisfies the following conditions: 
(i) G {like F) is the third term of an exact sequence 

where N is free and Z is infinite cyclic \ 
(ii) the 2-generator subgroups of G {like those of F) are free; 
(iii) G {like F) is residually nilpotent} i.e. 

n 7iG = i, 

where jiG is the ith term of the lower central series of G\ 
(iv) G/jiG^F/yiFforint, 2, • • • ; 
(v) G/Gn=.FIF" where X" is the second derived group of the group 

X; _ 
(vi) G is not free.2 

Before making a few remarks about the proof of the Theorem I 
would like to point out that, by a theorem in [ l ] , G is of cohomologi­
cal dimension at most 2. Whether every group in g is of cohomological 
dimension precisely 2, I do not as yet know! 

Incidentally, groups satisfying (iii) and (iv) (termed parafree in 
[2]) are plentiful [2]. The main point of the theorem is that nonfree 
parafree groups G satisfying (v) can exist. 

Remarks on the proof of the theorem. Let G be the group given by 
(1). We verify that G has the properties (i)-(vi). 

1 The author is a Sloan Fellow. 
21 thank S. Meskin for helping to verify (vi). 
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(i) is straightforward and is proved by taking N to be the normal 
closure of a and b and applying the Reidemeister-Schreier procedure 
for finding generators and relations for a subgroup of a group given by 
generators and relations (see e.g. [3, p. 86]). 

(ii) holds for all parafree groups [4]. 
(iii) is the most difficult property to verify. One proves that G has 

this property by making use of the exact sequence (i). 
(iv) and (v) follow exactly from the observation that G is the 

freest group generated by a, b and c satisfying the relation 
a~1c~ia~lciac~ib~lcjb = 1. 

(vi) There is an algorithm introduced by J. H. C. Whitehead [5] 
whereby one can effectively determine whether a group with a single 
defining relation is free, (vi) follows on applying this algorithm to G. 
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