SOME GROUPS THAT ARE JUST ABOUT FREE

BY GILBERT BAUMSLAG1

Communicated by Michio Suzuki, May 16, 1967

Introduction. I have recently come across a rather extraordinary class of groups G while looking for a group of cohomological dimension 1 which is not free. The groups $G \subseteq G$ are generated by three elements a, b, c satisfying the single defining relation $a = c^{-i}a^{-1}c^{i}a.c^{-i}b^{-1}c^{i}b$:

(1)
$$G = (a, b, c; a = c^{-i}a^{-1}c^{i}ac^{-j}b^{-1}c^{j}b)$$
 $(ij \neq 0).$

The purpose of this announcement is to make known the surprisingly similar behavior of these groups in g and the free group F of rank two.

THEOREM. Every group G in 9 satisfies the following conditions:

(i) G (like F) is the third term of an exact sequence

$$1 \rightarrow N \rightarrow G \rightarrow Z \rightarrow 1$$

where N is free and Z is infinite cyclic;

- (ii) the 2-generator subgroups of G (like those of F) are free;
- (iii) G (like F) is residually nilpotent, i.e.

$$\bigcap_{i=1}^{\infty} \gamma_i G = 1,$$

where $\gamma_i G$ is the ith term of the lower central series of G;

- (iv) $G/\gamma_i G \cong F/\gamma_i F$ for $i = 1, 2, \cdots$;
- (v) $G/G'' \cong F/F''$ where X'' is the second derived group of the group X:
 - (vi) G is not free.2

Before making a few remarks about the proof of the Theorem I would like to point out that, by a theorem in [1], G is of cohomological dimension at most 2. Whether every group in \mathfrak{g} is of cohomological dimension precisely 2, I do not as yet know!

Incidentally, groups satisfying (iii) and (iv) (termed parafree in [2]) are plentiful [2]. The main point of the theorem is that nonfree parafree groups G satisfying (v) can exist.

Remarks on the proof of the theorem. Let G be the group given by (1). We verify that G has the properties (i)-(vi).

¹ The author is a Sloan Fellow.

² I thank S. Meskin for helping to verify (vi).

- (i) is straightforward and is proved by taking N to be the normal closure of a and b and applying the Reidemeister-Schreier procedure for finding generators and relations for a subgroup of a group given by generators and relations (see e.g. [3, p. 86]).
 - (ii) holds for all parafree groups [4].
- (iii) is the most difficult property to verify. One proves that G has this property by making use of the exact sequence (i).
- (iv) and (v) follow exactly from the observation that G is the freest group generated by a, b and c satisfying the relation $a^{-1}c^{-i}a^{-1}c^{i}ac^{-j}b^{-1}c^{j}b = 1$.
- (vi) There is an algorithm introduced by J. H. C. Whitehead [5] whereby one can effectively determine whether a group with a single defining relation is free. (vi) follows on applying this algorithm to G.

REFERENCES

- 1. R. C. Lyndon, Cohomology theory of groups with a single defining relation, Ann. of Math. (2) 52 (1950), 650-665.
- 2. G. Baumslag, Groups with the same lower central sequence as a relatively free group. I: The groups, Trans. Amer. Math. Soc. (to appear).
- 3. W. Magnus, A. Karrass and D. Solitar, Combinatorial group theory, Interscience, New York, 1966.
- 4. G. Baumslag, Groups with the same lower central sequence as a relatively free group. II: Properties, Trans. Amer. Math. Soc. (to appear).
- 5. J. H. C. Whitehead, On certain sets of elements in a free group, Proc. London Math. Soc. 41 (1936), 48-56.

GRADUATE CENTER, THE CITY UNIVERSITY OF NEW YORK