SOME RESULTS ON LIE p-ALGEBRAS

BY GEORGE B. SELIGMAN¹

Communicated February 14, 1967

Let \mathfrak{L} be a Lie p-algebra ("restricted Lie algebra") over the field \mathfrak{F} of prime characteristic p [3, Chapter V]. Denote by x^p the image of $x \in L$ under the p-power operation, by x^p the image of x under the kth iterate of $x \to x^p$, with $x^{p^0} = x$. Let $\langle x \rangle$ be the subalgebra of \mathfrak{L} generated by x, i.e., the space of linear combinations of the x^p , $k=0, 1, 2, \cdots$. Call $x \in \mathfrak{L}$ separable if $x \in \langle x^p \rangle$, nilpotent if $x^p = 0$ for some k. Then we have proved the following decomposition theorem, which yields a slightly sharpened form of the Jordan-Chevalley decomposition [2, p. 71] for linear transformations in the case of prime chtracteristic.

THEOREM 1. Let $x \in \mathbb{R}$, a Lie p-algebra of finite dimension over the perfect field \mathfrak{F} . Then there exist elements s, $n \in \langle x \rangle$ with s separable and n nilpotent, such that x = s + n. If $y \in \mathbb{R}$ is separable, $z \in \mathbb{R}$ nilpotent, [yz] = 0, and x = y + z, then y = s and z = n.

A subalgebra $\mathfrak T$ of the Lie p-algebra $\mathfrak L$ is called *toral* if $\mathfrak T$ is commutative and if every element of $\mathfrak T$ is separable. A subalgebra $\mathfrak N$ is called nil if every element of $\mathfrak N$ is nilpotent. For a Lie p-algebra $\mathfrak L$ of endomorphisms of a finite-dimensional vector space over an algebraically closed field, to say that $\mathfrak L$ is triangulable is to say that $[\mathfrak L\mathfrak L]$ is nil. In this connection we have the following result.

THEOREM 2. Let $\mathfrak L$ be a Lie p-algebra over the perfect field $\mathfrak L$, and suppose that $[\mathfrak L \mathfrak L]$ is nil. Let $\mathfrak L$ be the set of nilpotent elements of $\mathfrak L$, and let $\mathfrak L$ be any maximal toral subalgebra of $\mathfrak L$. Then $\mathfrak L$ is an ideal in $\mathfrak L$, and $\mathfrak L = \mathfrak L + \mathfrak L$. If, moreover, $\mathfrak L$ is nilpotent (as ordinary Lie algebra), then $\mathfrak L$ is the set of all separable elements of $\mathfrak L$ and $\mathfrak L$ is central in $\mathfrak L$.

As to conjugacy of maximal toral subalgebras under these conditions we have shown the following:

THEOREM 3. Let $\mathfrak L$ be a Lie p-algebra over the field $\mathfrak L$. Suppose that the set $\mathfrak R$ of nilpotent elements is an ideal in $\mathfrak L$, and let $\mathfrak L_1$ and $\mathfrak L_2$ be toral subalgebras such that $\mathfrak L_i+\mathfrak R=\mathfrak L$. If $\mathfrak R$ is commutative, then there is an automorphism σ of the Lie p-algebra $\mathfrak L$ such that $x^{\sigma}=x$ for all $x\in\mathfrak R$, with $y^{\sigma}-y\in\mathfrak R$ for all $y\in\mathfrak L$, and with $\mathfrak L_1^{\sigma}=\mathfrak L_2$. In general, there is no

¹ Research supported in part by grants NSF-GP-4017 and NSF-GP-6558, and by a Yale University Senior Faculty Fellowship.

automorphism of the Lie p-algebra \mathfrak{L} mapping \mathfrak{L}_1 on \mathfrak{L}_2 , even when \mathfrak{F} is algebraically closed and $[\mathfrak{L}[\mathfrak{N}\mathfrak{N}]] = 0$.

Over perfect fields in general, maximal toral subalgebras are related to Cartan subalgebras by the following:

THEOREM 4. Let $\mathfrak L$ be a Lie p-algebra over a perfect field $\mathfrak L$. Let $\mathfrak L$ be a maximal toral subalgebra of $\mathfrak L$, $\mathfrak L = N(\mathfrak L)$ the normalizer of $\mathfrak L$. Then $\mathfrak L = N(\mathfrak L)$ is a Cartan subalgebra of $\mathfrak L$. Conversely, if $\mathfrak L = N(\mathfrak L)$ is a Cartan subalgebra of $\mathfrak L$, then $\mathfrak L = N(\mathfrak L)$, where $\mathfrak L$ is the set of separable elements of $\mathfrak L$, and $\mathfrak L$ is a maximal toral subalgebra of $\mathfrak L$.

THEOREM 5. Let \mathfrak{L} be a Lie p-algebra over a perfect field \mathfrak{L} . Let (x, y) be a nondegenerate symmetric associative (i.e., ([xy], z) = (x, [yz])) bilinear form on \mathfrak{L} such that (x, y) = 0 whenever y is nilpotent and [xy] = 0. Then the Cartan subalgebras of \mathfrak{L} are the maximal toral subalgebras.

From Theorem 4 and the usual proof for infinite fields [3] we see that all Lie p-algebras possess Cartan subalgebras. The conditions of Theorem 5 are satisfied by trace forms of p-representations whenever such forms are nondegenerate, and also by the usual "quotient trace form" [6] on the pr by pr \mathfrak{F} -matrices of trace zero, modulo scalars.

Our further results concern toral algebras. If \Re is any field of characteristic p then \Re , with its natural p-power, is a one-dimensional toral algebra over \Re , and may be regarded as a Lie p-algebra over any subfield of \Re . In this sense, we call a \Re -valued character of a toral algebra \Re over \Re an \Re -homomorphism of Lie p-algebras of \Re into the extension \Re of \Re . We then can prove

THEOREM 6. Let \mathfrak{L} be a (finite-dimensional) toral Lie p-algebra over \mathfrak{F} . Let \mathfrak{L} be an extension field of \mathfrak{F} . Then the following are equivalent:

- (1) All characters of \mathfrak{L} with values in an extension of \mathfrak{R} are \mathfrak{R} -valued;
- (2) $\mathfrak{L}_{\mathbb{R}}$ is isomorphic to a direct sum of copies of \mathfrak{R} .

Such an extension \Re will be called a *splitting field* for \Re ; by appeal to (1) it is not hard to see that \Re has a finite splitting field, and indeed a unique minimal one within a given algebraic closure of \Re . This field is a galois extension of \Re .

THEOREM 7. Let & be toral over &. Consider the properties:

- (a) the only F-valued character of & is zero;
- (b) & contains no subalgebra isomorphic to F.

If $\mathfrak F$ is finite, (a) and (b) are equivalent. On the other hand, there exist fields $\mathfrak F$ of all characteristics p>2 and two-dimensional toral algebras over $\mathfrak F$ which violate each of the implications (a) \Rightarrow (b), (b) \Rightarrow (a). In these examples the field $\mathfrak F$ may be taken to be perfect.

A toral algebra $\mathfrak L$ over $\mathfrak F$ is called *anisotropic* if condition (a) of Theorem 7 is satisfied, *semisplit* if $\mathfrak L$ has a composition series with factors isomorphic to $\mathfrak F$. A semisplit toral algebra need not be split, even over a finite field.

THEOREM 8. Let \mathfrak{L} be toral over \mathfrak{L} . Then \mathfrak{L} has a unique maximal anisotropic subalgebra \mathfrak{L} and a unique maximal semisplit subalgebra \mathfrak{L} . If \mathfrak{L} is finite, $\mathfrak{L} = \mathfrak{L} \oplus \mathfrak{L}$. There exist examples, as in Theorem 7, where $\mathfrak{L} = \mathfrak{L} + \mathfrak{L}$, $\mathfrak{L} \cap \mathfrak{L} \neq \mathfrak{L}$, and examples where $\mathfrak{L} \cap \mathfrak{L} = 0$ but $\mathfrak{L} \neq \mathfrak{L} + \mathfrak{L}$.

The results above are imperfectly analogous with some for algebraic tori [1], [4], [5]. The final two theorems relate toral algebras and algebraic tori:

THEOREM 9. Let T be an algebraic torus defined over the field $\mathfrak F$ of characteristic $p\neq 0$. Let $\mathfrak R$ be a minimal (separable) splitting field for T, $\mathfrak G$ the Galois group of $\mathfrak R/\mathfrak F$, $\mathfrak R=\mathfrak R(T)$ the Lie algebra of T. Then $X(\mathfrak R)$, the character group (under addition) of $\mathfrak R$, is isomorphic with $X^*(T)/pX^*(T)$ as groups with $\mathfrak G$ as operators $(X^*(T)=$ character group of T). If $p\neq 2$, $\mathfrak R$ is a minimal splitting field for $\mathfrak R$, so that T is split if and only if $\mathfrak R(T)$ is. This assertion fails for p=2.

If $m = \dim T = \dim \mathfrak{L}(T)$, then $X^*(T)$ is isomorphic to the free abelian group \mathbb{Z}^m ; if \mathfrak{L} is toral of dimension m, $X(\mathfrak{L})$ is an elementary p-group of order p^m . Thus the following is a converse to Theorem 9:

THEOREM 10. Let \mathfrak{L} be an m-dimensional toral algebra over \mathfrak{F} . Suppose there is a finite galois extension \mathfrak{L} of \mathfrak{F} splitting \mathfrak{L} , an action of $\mathfrak{G} = \mathfrak{G}(\mathfrak{R}/\mathfrak{F})$ on \mathbb{Z}^m , and a \mathfrak{G} -homomorphism of \mathbb{Z}^m onto $X(\mathfrak{L})$. Then there is an algebraic torus T defined over \mathfrak{F} , split by \mathfrak{R} , such that \mathfrak{L} is isomorphic to $\mathfrak{L}(T)$.

Proofs of these results will appear elsewhere.

REFERENCES

- 1. A. Borel and J. Tits, *Groupes réductifs*, Publ. Maths. Inst. Hautes Etudes Sci. 27 (1965), 55-151.
- 2. C. Chevalley, Théorie des groupes de Lie, II: Groupes algébriques, Hermann, Paris, 1951.
 - 3. N. Jacobson, Lie Algebras, Interscience, New York, 1962.
 - 4. T. Ono, Arithmetic of algebraic tori, Ann. of Math. 74 (1961), 101-139.
- 5. I. Satake, On the theory of reductive algebraic groups over a perfect field, J. Math. Soc. Japan 15 (1963), 210-235.
- 6. H. Zassenhaus, On trace bilinear forms on Lie algebras, Proc. Glasgow Math. Assoc. 4 (1959), 62-72.

YALE UNIVERSITY