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Let ? be a Lie ^-algebra ("restricted Lie algebra") over the field g 
of prime characteristic p [3, Chapter V]. Denote by xp the image of 
x(EL under the £-power operation, by xp the image of x under the 
feth iterate of x—>xp, with xp0 = x. Let (x) be the subalgebra of 8 
generated by x, i.e., the space of linear combinations of the xp , 
fe = 0, 1, 2, • • • . Call ffE8 separable if #E(# p ) , nilpotent if xp = 0 
for some k. Then we have proved the following decomposition the­
orem, which yields a slightly sharpened form of the Jordan-Chevalley 
decomposition [2, p. 71 ] for linear transformations in the case of 
prime chtracteristic. 

THEOREM 1. Let x £ 8 , a Lie p-algebra of finite dimension over the 
perfect field %. Then there exist elements s} w£(x) with s separable and 
n nilpotent, such that x = s+n. If y£:2 is separable, z£8 nilpotent, 
[yz] = 0, and x = y+z, then y — s and z = n. 

A subalgebra X of the Lie ^-algebra 8 is called total if X is commu­
tative and if every element of X is separable. A subalgebra 5ft is 
called nil if every element of 9t is nilpotent. For a Lie ^-algebra 8 of 
endomorphisms of a finite-dimensional vector space over an alge­
braically closed field, to say that 8 is triangulable is to say that [88] 
is nil. In this connection we have the following result. 

THEOREM 2. Let 8 be a Lie p-algebra ovet the petfect field %, and sup­
pose that [88] is nil. Let SSI be the set of nilpotent elements of 8, and let 
X be any maximal total subalgebra of 8. Then SSI is an ideal in 8, and 
8 = Ï + 9 Î . If, moreover, 8 is nilpotent (as ordinary Lie algebra), then X 
is the set of all separable elements of 8 and X is central in 8. 

As to conjugacy of maximal toral subalgebras under these condi­
tions we have shown the following: 

THEOREM 3. Let 8 be a Lie p-algebra over the field %. Suppose that the 
set SSI of nilpotent elements is an ideal in 8, and let Xi and X% be toral 
subalgebras such that Xi+Sfl = 2. If SU is commutative, then there is an 
automorphism a of the Lie p-algebta 8 such that x° = x fot all xÇzSfc, 
with y'—yÇESfl fot all y £ 8, and with X^—Xi. In genet al, thete is no 
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automorphism of the Lie p-algebra 8 mapping Xi on £2> even when % is 
algebraically closed and [8[9t9t]]=0. 

Over perfect fields in general, maximal toral subalgebras are re­
lated to Cartan subalgebras by the following: 

THEOREM 4. Let 8 be a Lie p-algebra over a perfect field $. Let Xbe a 
maximal toral subalgebra of 8, & = N(X) the normalizer of %. Then 
§ is a Cartan subalgebra of 8. Conversely, if § is a Cartan subalgebra of 
8, then § = •#(£), where X is the set of separable elements of § , and X is 
a maximal toral subalgebra of 8. 

THEOREM 5. Let 8 be a Lie p-algebra over a perfect field %. Let (x, y) 
be a nondegenerate symmetric associative (i.e., ([xy], z) = (x, [yz])) 
bilinear form on 8 such that (x, y)=0 whenever y is nilpotent and [xy] 
= 0. Then the Cartan subalgebras of 8 are the maximal toral subalgebras. 

From Theorem 4 and the usual proof for infinite fields [3] we see 
that all Lie ^-algebras possess Cartan subalgebras. The conditions of 
Theorem 5 are satisfied by trace forms of £-representations whenever 
such forms are nondegenerate, and also by the usual "quotient trace 
form" [6] on the pr by pr ^-matrices of trace zero, modulo scalars. 

Our further results concern toral algebras. If $ is any field of char­
acteristic p then $ , with its natural £-power, is a one-dimensional 
toral algebra over $ , and may be regarded as a Lie ^-algebra over 
any subfield of $ . In this sense, we call a ^-valued character of a toral 
algebra 8 over % an g-homomorphism of Lie p-algebras of 8 into the 
extension $ of gf. We then can prove 

THEOREM 6. Let 8 be a (finite-dimensional) toral Lie p-algebra over §. 
Let $ be an extension field of %. Then the following are equivalent: 

(1) All characters of 8 with values in an extension of $ are ^-valued; 
(2) 8$ is isomorphic to a direct sum of copies of $ . 

Such an extension $ will be called a splitting field for 8 ; by appeal 
to (1) it is not hard to see that 8 has a finite splitting field, and indeed 
a unique minimal one within a given algebraic closure of %. This 
field is a galois extension of %. 

THEOREM 7. Let 8 be toral over %. Consider the properties: 
(a) the only ^-valued character of 8 is zero; 
(b) 8 contains no subalgebra isomorphic to $. 
If % is finite, (a) and (b) are equivalent. On the other hand, there exist 

fields % of all characteristics p>2 and two-dimensional toral algebras 
over % which violate each of the implications (a)=»(b), (b)=>(a). In 
these examples the field % may be taken to be perfect. 
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A toral algebra S over % is called anisotropic if condition (a) of 
Theorem 7 is satisfied, semisplit if 8 has a composition series with 
factors isomorphic to %. A semisplit toral algebra need not be split, 
even over a finite field. 

THEOREM 8. Let 8 be toral over %. Then 8 has a unique maximal 
anisotropic subalgebra 21 and a unique maximal semisplit subalgebra ©. 
If g is finite, 8 = 21©©. There exist examples, as in Theorem 7, where 
8 = 21+©, 2 i n © ^ 0 , and examples where 2IH© = 0 but 85*21+©. 

The results above are imperfectly analogous with some for alge­
braic tori [ l ] , [4], [5]. The final two theorems relate toral algebras 
and algebraic tori: 

THEOREM 9. Let T be an algebraic torus defined over the field % 0} 
characteristic p?*0. Let $t be a minimal (separable) splitting field f or T, 
® the Galois group of $/3f, 8 = 8(T) the Lie algebra of T. Then X(2), 
the character group (under addition) of 8, is isomorphic with 
X*(T)/pX*(T) as groups with © as operators (X*(T)= character 
group of T). If p 7*2, $ is a minimal splitting field f or 8, so that T 
is split if and only if 2(T) is. This assertion fails f or p = 2. 

If w = dim r = dim S(T), then X*(T) is isomorphic to the free 
abelian group Zm\ if 8 is toral of dimension m, X(2) is an elementary 
p-group of order pm. Thus the following is a converse to Theorem 9 : 

THEOREM 10. Let 8 be an m-dimensional toral algebra over 3f. Sup­
pose there is a finite galois extension Ê of % splitting 8, an action of 
® = ® ( $ / g ) on Zm, and a ®-homomorphism of Zm onto Z (8) . Then 
there is an algebraic torus T defined over §, split by $ , such that 8 is 
isomorphic to 8(T). 

Proofs of these results will appear elsewhere. 
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