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Let & be a Lie p-algebra (“restricted Lie algebra”) over the field
of prime characteristic » [3, Chapter V]. Denote by x? the image of
x&EL under the p-power operatlon by x*" the image of x under the
kth iterate of x—x?, with x?"=x. Let (x) be the subalgebra of ¢
generated by x, i.e., the space of linear combinations of the x”k
k=0, 1, 2, . Call xEQ separable if xE{x»), nilpotent if x* =
for some k. Then we have proved the following decomposition the—
orem, which yields a slightly sharpened form of the Jordan-Chevalley
decomposition [2, p. 71] for linear transformations in the case of
prime chtracteristic.

THEOREM 1. Let xR, a Lie p-algebra of finite dimension over the
perfect field §. Then there exist elements s, n < (x) with s separable and
n nilpotent, such that x=s+n. If y& L is separable, 2E8R nilpotent,
[v2] =0, and x=y+3, then y=s and z=mn.

A subalgebra T of the Lie p-algebra { is called foral if £ is commu-
tative and if every element of T is separable. A subalgebra I is
called #il if every element of N is nilpotent. For a Lie p-algebra & of
endomorphisms of a finite-dimensional vector space over an alge-
braically closed field, to say that @ is triangulable is to say that [2€]
is nil, In this connection we have the following result.

THEOREM 2. Let & be a Lie p-algebra over the perfect field §, and sup-
pose that [RR] is nil. Let N be the set of nilpotent elements of R, and let
T be any maximal toral subalgebra of 8. Then N is an ideal in &, and
=T+ N. If, moreover, L is nilpotent (as ordinary Lie algebra), then T
15 the set of all separable elements of & and T is central in L.

As to conjugacy of maximal toral subalgebras under these condi-
tions we have shown the following:

THEOREM 3. Let & be a Lie p-algebra over the field §. Suppose that the
set N of nilpotent elements is an ideal in 8, and let T, and T, be toral
subalgebras such that T;+N=2L. If N is commutative, then there is an
automorphism o of the Lie p-algebra ® such that x*=x for all xEN,
with y*—yEN for all yER, and with T{=T.. In general, there is no
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automorphism of the Lie p-algebra & mapping T, on T,, even when § is
algebraically closed and [R[NN]]=0.

Over perfect fields in general, maximal toral subalgebras are re-
lated to Cartan subalgebras by the following:

THEOREM 4. Let ® be a Lie p-algebra over a perfect field §. Let T be a
maximal toral subalgebra of 8, O=N(Z) the normalizer of L. Then
O is a Cartan subalgebra of & Conversely, if © is a Cartan subalgebra of
R, then O =N(Z), where T 1is the set of separable elements of , and T is
a maximal toral subalgebra of {.

THEOREM 5. Let 8 be a Lie p-algebra over a perfect field §. Let (x, y)
be a mondegenerate symmetric associative (i.e., ([xy], 2)=(x, [yz]))
bilinear form on R such that (x, v) =0 whenever y is nilpotent and [xy]
=0, Then the Cartan subalgebras of L are the maximal toral subalgebras.

From Theorem 4 and the usual proof for infinite fields [3] we see
that all Lie p-algebras possess Cartan subalgebras. The conditions of
Theorem 5 are satisfied by trace forms of p-representations whenever
such forms are nondegenerate, and also by the usual “quotient trace
form” [6] on the pr by pr F-matrices of trace zero, modulo scalars.

Our further results concern toral algebras. If  is any field of char-
acteristic p then R, with its natural p-power, is a one-dimensional
toral algebra over &, and may be regarded as a Lie p-algebra over
any subfield of ®. In this sense, we call a R-valued character of a toral
algebra g over § an §-homomorphism of Lie p-algebras of & into the
extension & of §. We then can prove

THEOREM 6. Let 8 be a (finite-dimensional) toral Lie p-algebra over .

Let & be an extension field of §. Then the following are equivalent:
(1) All characters of & with values in an extension of & are R-valued;
(2) Rg s isomorphic to a direct sum of copies of R.

Such an extension & will be called a splitiing field for ®; by appeal
to (1) it is not hard to see that & has a finite splitting field, and indeed
a unique minimal one within a given algebraic closure of §. This
field is a galois extension of §.

THEOREM 7. Let § be toral over §. Constder the properties:

(a) the only §-valued character of & is zero;

(b) & contains no subalgebra isomorphic to F.

If § is finite, (a) and (b) are equivalent. On the other hand, there exist
fields § of all characteristics p>2 and two-dimensional toral algebras
over § which violate each of the implications (a)=(b), (b)=(@). In
these examples the field § may be taken to be perfect.
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A toral algebra { over § is called anisotropic if condition (a) of
Theorem 7 is satisfied, semisplit if ® has a composition series with
factors isomorphic to §. A semisplit toral algebra need not be split,
even over a finite field.

THEOREM 8. Let R be toral over . Then L has a unique maximal
anisotropic subalgebra N and a unique maximal semisplit subalgebra &.
If § is finite, Q=UDS. There exist examples, as in Theorem T, where
L=A4+S, ANS =0, and examples where NS =0 but LA+ S.

The results above are imperfectly analogous with some for alge-
braic tori [1], [4], [S]. The final two theorems relate toral algebras
and algebraic tori:

THEOREM 9. Let T be an algebraic torus defined over the field § of
characteristic p%0. Let R be a minimal (separable) splitting field for T,
® the Galois group of R/F, =L(T) the Lie algebra of T. Then X (),
the character group (under addition) of R, is isomorphic with
X¥(D)/pX*¥(T) as groups with & as operators (X*(T)=character
group of T). If p=2, & is a minimal splitting field for R, so that T
is split if and only if (T) is. This assertion fails for p=2.

If m=dim T=dim f(7T), then X*(T) is isomorphic to the free
abelian group Z7; if  is toral of dimension m, X (8) is an elementary
p-group of order p™. Thus the following is a converse to Theorem 9:

THEOREM 10. Let R be an m-dimensional toral algebra over §F. Sup-
pose there is a finite galois extension K of § splitting R, an action of
O=0(R/F) on Z, and a G-homomorphism of Z™ onto X (R). Then
there is an algebraic torus T defined over §, split by R, such that & is
isomorphic to (T).

Proofs of these results will appear elsewhere.
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