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1. Introduction. Let X = (#* + <*>, Mt, Px) be the Wiener process 
on Rn, the real vector space of n-tuples.2 We assume the process is 
separable in the sense of Doob so that if 0, is the sample space for X, 
then Px{œ(E&\x(>)(u) is continuous on [0, oo )}= l for all xÇzRn. 
Let J£>I, B2, • • • , Bn, and V be bounded continuous complex NXN 
matrix-valued functions on Rn and let D(B; V) be the closure in 
L2(Rn; CN) of the differential operator 

1 / d V n d 
D(B; V) = - £ ( — ) + £ Bj(x) — + V(x) 

with domain Co(Rn; CN)\ (Co(Rn, CN) denotes the space of infinitely 
differentiate CN-valued functions on Rn with compact support.) 

I t is the purpose of this announcement to state two theorems which 
prove the existence of an NXN matrix-valued functional at(B; V) 
o n O X [ 0 , co) such that 

{UP; V)4>}(x) s Jf .{«,(P; V)cj>(xt)}9 

for <p^L2(Rn; CN)f defines a strongly continuous semigroup of opera­
tors on L2(Rn; CN) with infinitesimal generator D(B; V). 

Note that if -~D(B; V) is the Schrödinger operator for a physical 
system, perhaps involving internal spin, and (3=1/BT, then Tp(B; V) 
is the quantum statistical matrix for the system in question. I t is this 
fact which motivated our interest in the problem discussed in this 
paper. See Ginibre [9] for an interesting discussion of the application 
of Wiener integral representations to statistical mechanics.3 

1 Most of the work for this paper was done while the author was on sabbatical 
leave from the University of California at Los Angeles and in residence at Princeton 
University. Partial support was also received from NSF Grant 5279. 

2 See [6, Chapter VII]. We shall use the notation introduced by Dynkin without 
further comment. 

8 The restrictions we have placed on the {Bj} and V would only allow us to 
apply the Wiener integral representation theory to approximations to real situations. 
It should be remarked that it is not much more difficult to handle the somewhat more 
realistic case where V~Vi-\-V<t and where Vi is as above and V% is a real scalar-
valued function which is bounded from above on Rn and continuous except for a set 
of capacity zero i.e., when V2 is a repulsive potential. 
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Much work has been done on Wiener integral representations of 
diffusion-like semigroups, or, what is the same thing, the Wiener 
integral representation of the solution of diffusion equations. For 
example, see Kac [lO], Ray [ l l ] , Cameron [3], Getoor [8], Daleckii 
[4], Feldman [7], Beekman [2], the present author [ l ] , and others. 
Only Daleckii, to the best of our knowledge, considers the case where 
N>1. However his approach is completely different from ours. 

For the case iV== 1 and B^0y our results are known but the tech­
niques we use seem to be new and more natural. They are motivated 
by the techniques Darling and Siegert developed for the case Bj^O 
for j ' = l , • • • , n and N=l. For example, see [8]. 

I would like to thank Professor Edward Nelson for the many con­
versations we had while we were doing the research for this paper. 

2. Main results. We will give the pertinent definitions and state 
the main results in this section. Proofs will not be given, but the most 
important lemmas needed in the proofs will be stated. Detailed 
proofs of the results in this announcement will appear elsewhere. 

NOTATION. If ƒ is a scalar or vector valued on 0, then Mx{f} 
denotes the integral of ƒ with respect to Px if it exists. If A is a com­
plex NXN matrix, let \A\ 2 = Trace (AA*) where A* is the complex 
adjoint of A. 

DEFINITION. A complex NXN matrix-valued function a on 
OX [0, 00) is said to be ^-admissible for x(E:Rn if a has the following 
properties: 

(i) a('t t)^at{-)^at is ^f-measureable for t>0 (see [6, pp. 
80-83] for the definition of rg); 

(ii) Px{coE:^\(X(.)(o)) is continuous on [0, 00)} = 1 ; 
(iii) for each T > 0 , 

M*{ ƒ l a < l 2 û 4 < °°' 

THEOREM 1. Let Bit J52, • • • , Bn, and V be as in §1. There then 
exists a complex NXN matrix-valued function a(B;V)^a on 
OX [0, oo) such that: 

(a) a is x-admissible for all #£JRn ; 
(b) for each T > 0 , there exists a constant QT, independent of x, 

such that 

M , { | a , | 2 } g Qr, 

forO^t^T; 
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(c) for each x^Rn and t^tO, 

at = J + Z) I aTBj(xr)dxT + I aTV{xT)dr} 
y=i J o «̂  o 

almost surely with respect to Px (a.s.Px) and where Yll«ifoarBt(xT)dxj
T 

is a stochastic integral and I is the NXN identity matrix. 

See [6, Chapter VII ] , for a thorough discussion of stochastic 
integrals. 

REMARK. For N=l, 

«<(') = e x P Ë Bj(xr)dxr + I ( V(xT) - — ] £ SyO&r) W 

satisfies (a), (b), and (c) of Theorem 1. 
The proof of this theorem follows from the following two lemmas 

which we state but do not prove. 

LEMMA 1. Let Bi, J52, • • • , Bn, and V be as in Theorem 1. Let 
xÇzRn. There then exists a complex NXN matrix-valued function 
ax(B; V) = a*oiiQX[0, oo) such that: 

(a') ax is x-admissible; 
(b7) for each T>0, there exists a constant Qr such that: 

Mx{\at\
2} SQ*T 

for O^t^T; 
(c') for t£0, 

Oit 
= I + X) I <*rB (xT)dX%T + I V(xT)dr, 

;=1 ^0 Jo 

a.5. Px. 

LEMMA 2. Ze/ ax, xÇ:Rn, be the functionals constructed in Lemma 1. 
TT^re tóen exists an x-admissible functional a o w Û X [ 0 , oo) such that 

P*{ «*•>(*>) = of(.)(co) ön [0, oo)} = 1, 

for all x£E:Rn. 

NOTATION. Let P(t, x) = (2>ir)-ni2 exp[ - | a ; | 2 /2*] where \x\2 

= Z ? - i W For <t>(EL*(R«; C*), let 
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It is well known that Tt is a strongly continuous semigroup of opera­
tors on L2(Rn; CN) with infinitesimal generator 5(0; 0) (see §1). 

THEOREM 2. Let Bh B2, • • • , Bn, V% and a(B; V)^a be as in 
Theorem 1. Then for each </>&L2(Rn; CN), x£Rn, and t^0f 

(Tt(B;V)ct>)(x) s Af,{ «,-*(*,)} 

exists and defines an element of L2 (Rn ; CN). Moreover {Tt (B ; V) : t^ 0} 
is a strongly continuous semigroup of operators on L2(Rn; CN) with 
infinitesimal generator D(B; V). 

The main step in the proof of this theorem is to prove the follow­
ing lemma. 

LEMMA 3. Let Co(Rn; CN) denote the continuous CN-valued func­
tions on Rn with compact support. Then for all />0, xÇzRn, and 
<t>&Co(Rn; CN) we have: 

(Tt(B; V)<f)(x) = (2»(*) + f (TT(B; V)[PTt^T<t>](x)'dr 

where P = 22r. iBy(-)3/a^+F(-) . 
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