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Let X be a Banach space, X* its conjugate space with the pairing 
between w in X* and u in X denoted by (wt u). If T is a mapping 
(in general, nonlinear) with domain D(T) in X and range R(T) in X*, 
T is said to be monotone if for all u and v of D(T) 

(1) (T(u) - T(p), u-v)^0. 

More generally, a subset G of X X X * is said to be a monotone set if 
for each pair [ui, W\] and [u2, w^\ in G, we have 

(2) (w2 — wi, ^2 ~ Ui) è 0. 

Such a set G is said to be maximal monotone if it is maximal among 
monotone sets in the sense of set inclusion, and a mapping T is said 
to be maximal monotone if its graph G(T) is a maximal monotone set. 

For reflexive Banach spaces X and mappings T with D(T)~X, 
the basic result obtained independently by Browder [2] and Minty 
[20] states that if T is a monotone operator from D(T)=X to X* 
which is hetnicontinuous, (i.e. continuous from each line segment in 
D(T) to the weak topology on X*), and coercive, i.e. 

(3) (Tu, u)/\\u\\ -* + 00 (as ||«|| -> + 00) 

then the range R(T) of T is the whole of the space X*. This theorem 
and its extensions to various classes of operators T from all of X to 
X* which satisfy modified monotonicity conditions (Browder [4], 
[9], [10], [ l l ] , [12], Leray-Lions [15], Hartman-Stampacchia [14]) 
are the basis of the application of the theory of monotone operators 
to obtain general existence theorems for nonlinear elliptic boundary 
value problems. 

For nonelliptic problems, the corresponding reduction to equations 
for nonlinear operators acting from a reflexive Banach space X to 
its dual space X* yields operators T which are only defined on a 
dense subset D(T) of X. Results covering the principal parabolic and 
hyperbolic problems were obtained in Browder [3], [5], [7] for 
operators T of the form T = L + T0, where To is an everywhere de­
fined hemicontinuous monotone nonlinear operator from X to X* 
which is coercive and maps bounded subsets of X into bounded sub-
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sets of X* while L is a closed densely-defined monotone linear op* 
erator from X to X* such that its adjoint L* is the closure of its 
restriction to D(L)C\D(L*). 

I t is the purpose of the present note to present some new and much 
more general results on maximal monotone operators from a reflexive 
Banach space X to its dual space X* which permit a wider and more 
flexible application of the theory of densely defined monotone op­
erators. The detailed proofs appear in [13 ], but we shall develop the 
principal tool of the argument in Proposition 1 below. 

Our basic result is the following. 

THEOREM 1. Let X be a reflexive Banach space•, 7\ a maximal mono­
tone mapping from X to X* with 0<ED(Ti). Let T2 be a hemicontinuous 
monotone mapping from all of X to X* which is coercive and maps 
bounded subsets of X into bounded subsets of X*. Let T~ T1 + T2, with 
D(T)=D(T{). 

Then the range R(T) of T is all of X*. 

Some important consequences of Theorem 1 are the following: 

THEOREM 2. Let X be a strictly convex reflexive Banach space with a 
strictly convex conjugate space X*, T\ a maximal monotone mapping 
from X to X*, T2 a hemicontinuous monotone mapping of all of X into 
X* which carries bounded subsets of X into bounded subsets of X*. 

Then the mapping T=Ti+T2 is a maximal monotone map of X 
into X*. 

THEOREM 3. Let X be a reflexive Banach space with a strictly convex 
dual space and suppose that T is a coercive maximal monotone mapping 
from X to X* with 0EL>(T). 

Then R(T) is all of X*. 

THEOREM 4. Let Xbea uniformly convex Banach space with a strictly 
convex dual space X*, T a maximal monotone mapping from X to X*. 
Suppose that the inverse image under T of each bounded set is bounded. 

Then R(T) is all of X*. 

The strict convexity and uniform convexity hypotheses of The­
orems 2, 3, and 4 can be avoided (as we shall show in another paper) 
by systematic use of multivalued mappings. 

I t is shown in [13] that Theorem 1, as well as Theorems 2, 3, and 4, 
are valid for Z\ and T multivalued mappings from X to X*. This is 
of particular importance in the application of these results to the 
subclass of the monotone mappings which consists of the subdifferen-
tials of proper lower semicontinuous convex functions ƒ from X to 
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RlU{ + oo }, ( [ l ] , [23], [24]). An element w of X* is said to be a 
subgradient of ƒ a t u in X provided that for all v in X 

(4) f(p) ^f(u) + (w,v-u). 

The subdifferential df(u) is the set of all subgradients w for ƒ a t u. 
Rockafellar [24] has shown that for any Banach space X and any 
proper l.s.c. convex function ƒ on X, df is a maximal monotone (in 
general, multivalued) mapping from X to X*. 

THEOREM 5. Let X be a reflexive Banach space with X* strictly con­
vex, ƒ a proper lower semicontinuous convex function on X, df its sub-
differential. Suppose that Q(EDffi), and let J be a duality mapping of 
X into X*. 

Then (a) The mapping T = df+J maps onto X*, 
(b) If X is uniformly convex, (df+J)"1 is a continuous mapping 

of X* onto D(df). In particular, D(df) is pathwise-connected. 

For X a Hubert space H, the result of Theorem 5 is due to Moreau 
[23], and is related to a theorem of Minty [19] on maximal monotone 
sets in Hilbert space. For the case treated here, Theorem 5 answers 
a question posed by Rockafellar in [24], 

The proofs of our theorems combine ideas from the study of non­
linear variational inequalities (Browder [ l l ] , [12]) and a new ap­
proach to the theory of monotone operators on convex sets developed 
by Minty [22]. (Earlier results on monotone inequalities on convex 
sets and linear variational inequalities are given in [25], [B], [14], 
[lO], [16], [17], [18]). In particular, Minty proves the following 
(Theorem 3 of [22]). 

LEMMA. Let K be a compact convex subset of a locally convex topologi­
cal vector space E, G a monotone subset of KXE*t w^ an arbitrary ele­
ment of E*. Then there exists an element uQ of K such that: 

(5) (w ~wo,u — uo) ^ 0, (for all [u, w] in G). 

We use the following sharper result, which combines Minty's 
lemma, Lemma 2 of [8], and Lemma 4 of [ l l ] . Its proof, which is 
based upon that of Lemma 4 of [ l l ] , gives an alternative proof of a 
different type for Minty's lemma. 

PROPOSITION 1. Let K be a compact convex subset of a locally convex 
space E, G a monotone subset of KXE*, T a continuous map of K into 
E*. Let WQ be an element of E*. 

Then there exists u<> in K such that for all [u, w] in G, 

(6) (T(UQ) + W — WQ, U — W0) ^ 0. 
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PROOF OF PROPOSITION 1. We may assume without loss of generality 
that WQ = 0. Suppose that the assertion of Proposition 1 is false. Then 
for each x in K, there exists a t least one element [u, w] in G with 

(7) (T(x) + w,u-x)<0. 

For each element [u, w] in G, let NUtW be the open set in K given by 

(8) Nu,w = {x\ x G K, (T(x) + w,u- x) < 0} . 

The family {NUfW: [uy w](~zG} is then an open covering of the com­
pact set K, and hence there exists a finite family { [UJ, Wj], l^j^n} 
in G such that the corresponding NUJ,WJ cover K. We form a continu­
ous partition of unity on K corresponding to this finite open cover­
ing, i.e. an n-tuple }j8i, • • • , j8n} of continuous real functions on K 
such that for each j , ]8y vanishes outside of NUjtWp 0^pj(x) ^ 1 , and 
for all x in K, J%ml fy(x) = 1. 

We define two continuous mappings p and q of K into E and £*, 
respectively, by: 

n n 

(9) p(x) = Eft(«)«y, q(x) = EA(*)wy. 
y~i y- i 

For each # in X, £(#) is a convex linear combination of points of K 
and hence lies in K. Therefore p is a continuous self-mapping of if, 
and by the Tychonoff fixed point theorem, p has a fixed point #o in 
K, (p(xo)=Xo). 

On the other hand, if we let 

(10) \(x) = (r(*) + q(x), x - p(x)), (x G K), 

and expand £ and q, we find that X(x) =Ai(x)+A2(#), where 
n 

y-i 

for each # in K, while: 

M%) = X) fo(%)Pk(x)[(T(x) + wj, x — uk) + (T(x) + wk, x - «y)]. 
i^y<&â» 

We note tha t : 

(«V, » — «*) + («fc, * — Wy) = («7, X — Wy) + (*% * — Uk) 

+ (Wy — Wk, Uj — W*)« 

Hence for all x in K, 
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X2W =« S Pj(*)Pk(x)[(T(x) + Wh X — U§) 

+ (T(x) + wk,x*~ Uh) 

+ (WJ — v>k, uj — Uk)] à 0. 

Finally, X(x) =*\i(x)+*K2(x) > 0 for all x in K, while 

Hxo) = (r(^0) + q(x0), XQ — £(#0)) = 0, 

This contradiction proves the proposition, q.e.d. 
The writer has noted that Theorem 5 can also be obtained as a 

corollary of the results on nonlinear variational inequalities given in 
Browder [ l l ] . The methods presented here (and developed in detail 
in [l3]) can also be applied to nonlinear variational inequalities 
involving maximal monotone operators (as well as maximal monotone 
operators on convex sets) and to more general classes of operators 
satisfying monotonicity conditions of weaker types. 

Added in proof. The writer has discovered that Proposition 1 (and 
thereby Minty's lemma as well) was proved by H. Debrunner and 
P. Flor, Archiv. Math. 15 (1964), 445-447, using fixed point theorems 
for multivalued mappings. The method of proof given above has been 
applied by the writer to obtain more general fixed point theorems 
for single-valued and multivalued mappings in topological vector 
spaces. 
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