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1. Introduction. Consider a topological linear space V, with ad­
joint space V*> and a f unction ƒ defined on a domain in F and taking 
on values in V*; one wishes to prove the existence of a solution of the 
equation ƒ (x) = 0. A "standard" method is to show that ƒ is the Fréchet 
differential of a convex, real-valued functional <f> and use the (vir­
tually automatic) lower-semicontinuity of <f> to show that </> has a 
minimum on some compact set in V (which is usually taken with a 
"weak" topology). With appropriate asymptotic conditions on </>> 
the compact set can be taken very large so that the minimum occurs 
at an interior point xf which then satisfies the equation. In this prob­
lem and a class of related problems, it has been found that the essen­
tial property of ƒ is that it is monotone in the sense: for all xi9 x^ 
we have (xi—Xz, /(^j)—/(x2))èO, and the existence of the scalar <j> 
can often be dispensed with. (See [2] for a discussion of some of the 
limitations of the "monotonicity" method as opposed to the varia­
tional method.) 

The "monotonicity" method, as presently constituted, is pretty 
much limited to Banach spaces, usually reflexive, and some aspects 
of the theory have been developed only in Hubert space. Moreover, 
there are difficulties corresponding to the cases (in the variational 
method): (1°) <j> is not Fréchet-differentiable, but has a multiple-
valued subgradient (see [14], [l]); (2°) <f> is only defined on a closed 
convex subset C of V, or it is desired to minimize <f> only over such a 
set; and (3°) <j>(x) does not "become infinite at infinite x" but is at 
least "nonincreasing near infinity. " 

These difficulties have been overcome in various combinations, 
but usually with strong restrictions on the space V. The writer and 
F. E. Browder (see, e.g. [ll]) treated (3°); the writer introduced the 
concept of "maximal monotone set" to deal with (1°), and treated 
(lö), (2°), and (3Ö) simultaneously (see [13]) but for a Hilbert space 
V and a closed linear subspace C. Recently Stampacchia and Lions 
t8L [9]> f15] have seen how to deal with (2Ô) for general C, but for 
linear ƒ in a Hilbert space V. Lescarret [7] and Browder [2], [3] ex­
tended this latter work to nonlinear ƒ in a reflexive Banach space V. 

1 This research was conducted with the support of an Alfred P. Sloan fellowship 
and of National Science Foundation grant GP-5229. 
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The success of all these researches suggested to the writer that 
some simple principle might exist which has been overlooked in 
earlier research, and which would permit the redevelopment of the 
theory on a better foundation. We express, in Theorem 2 below, what 
appears to be such a principle. With its aid, we give a simple rede­
velopment of much of the existing theory in a very wide class of 
spaces (apparently wider than Banach spaces); the development 
parallels the variational method in that it works first with a compact 
set, and considers noncompact sets afterward. In addition, it makes 
substantial contributions to the treatment of (1°) above, and handles 
(2°) without difficulty. In the present paper, we do not succeed so 
well with (3°) in that we postulate (x, f(x))>0 near infinity, rather 
than the weaker (xf f(x))}>Ot to treat closed convex noncompact C; 
however, the stronger condition suffices for most needs of analysis. 
We make no at tempt to treat the solution of f(x, x) = 0, with ƒ mono­
tone in first argument and completely continuous in second argu­
ment, leaving this for future development. 

2. A theorem in the theory of linear inequalities. Let V and V1 

be vector spaces over the reals, and let ( , ) be a bilinear form 
mapping VX V1 into R. (Example: if F is a complex linear space and 
V1 a space of linear functionals on V, then (xf y) = Re y(x) is such a 
form.) In the sequel, the word "monotone" will always be meant 
with reference to ( , ). 

THEOREM 1. Let {(#», y^): i = l , • • • , m\ be a sequence of pairs in 
VXV1 such that, for i, j = l, • • • , m, we have (xi—xj, ^ — ^ ) è 0 , 
i.e. a monotone sequence. Then there exists a vector x such that for 
i = l, • • • , mt we have (xi—x, y»)^0. 

This is a known theorem [lO], [6], [4] which is inadequate because 
it does not give enough information on the location of x. (See [12] 
for an at tempt to apply Theorem 1 to analysis-problems.) We 
remark, in passing, that if {(#»•, y{)} is contained in the subgradient 
of a convex functional, then x can be chosen as one of the Xi, namely 
one which makes <j>(Xi) a minimum. One can define a relation >- on 
{l, • • • , m\ by i >- j provided (#— Xj, y»)<0, and then the "cyclic 
monotonicity" condition of Rockafellar [14] and a little bit of graph 
theory prove this fact. (>- has no directed circuits.) 

THEOREM 2. Same as Theorem 1, but add: " . . . and x contained in 
K(xi, • • • , xm), the convex hull of {x\, • • • , xm}." 

PROOF. Recall the Fundamental Theorem of Game Theory: for 
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any matrix of reals [a#], there exist probability-vectors X° and fx° 
such that 

22 ^i^ij^j = m a x 22 ^iai)V>j ^ Eftm z2 ^i^ijl^j 

= m a x min ]T) X»*a#/zy = m in m a * £ ) \idijfij. 

Now, if [a,y] is square and antisymmetric, the equality of the last two 
expressions shows that this number (the "value of the game") is zero. 
(One interchanges the dummy symbols X and /x.) In the third of these 
five expressions, put /x equal a Kronecker-delta to see that for any 
antisymmetric matrix of reals [a#], there exists a probability-vector X° 
such that X)* ̂ ?0# = 0 for aMJ* The same statement is true a fortiori for 
any [a#] whose symmetric part has all nonnegative entries (by apply­
ing the above principle to the antisymmetric part). Let a^ = (xj—Xi, y,), 
which has nonnegative symmetric part by the "monotonicity" hy­
pothesis, to see (#/— 2)<^?#* 3ty)è0; Theorem 2 is proved. 

There is very little "geometric intuition" to this theorem, which 
tends to explain why it went so long unseen. I t is, however, suggested 
by the fact that the "monotoniaty method" for analysis-problems 
(see [2], [3]) was developed over a convex set C; compactness is not 
sufficient alone, as in the variational method. 

3. Applications, We now give our "main theorem" : 

THEOREM 3. Let V, V1 be vector spaces over the reals, and let ( , ) 
be a bilinear form on VXV1 into the reals. Let V be topologized with any 
topology in which all of (•, y) are continuous, and let C be a compact 
convex set in V. Let {(xa, ya) : aÇzA, an index set} be a monotone subset 
of CXV1 (for example, the graph of a monotone function with domain 
contained in C). Then there exists xÇiC such that, for all a G A, we have 
{xcc-x, y*)^0. 

PROOF. The sets CC\{x: (xa, y) — {x, ^ ) ^ 0 } have nonempty inter­
section when taken finitely many a t a time, by Theorem 2 ; they are 
closed sets, by the continuity of (•, 3/). The "finite intersection prop­
erty" of compactness gives the conclusion. 

Notice that it is irrelevant whether V is locally-convex or a Haus-
dorff space, or even whether the vector-space operations are con­
tinuous, or the topology is invariant under the vector-space opera­
tions. 

We now have to demonstrate that noncompact C can be handled. 

file:///idijfij
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Let us say that V (taken with a topology) is "regular" provided 
(a) For any compact convex set C and any point x, the closed convex 
hull of CU {x} is compact, and (b) if a compact set C contains one 
endpoint of a line-segment but omits the other, then it omits some 
third point of the line-segment. (Note (b) holds in any "topological 
vector space," since a one-dimensional topological vector space has 
the topology of the reals.) 

THEOREM 4. Assume V, V1, { , ) and the topology on V as in The-
or em 3 ; in addition, assume that V is regular. Let C be a closed convex 
subset of V, and let f: C-+V1 be a function whose graph is monotone, 
i.e. a monotone function. Suppose 0 £ C , and that there exists a compact 
set DQC such that, for xÇ£D but # £ C , we have (x, f(x))>0. Then 
there exists a point xQD such that, for all x' £ C, we have (xr —x,f(x') ) è 0. 

PROOF. For # ' £ £ , consider the set DC\{x; (x'~x, f(x'))^0}. I t 
suffices to show these sets have nonempty intersection when taken 
finitely many a t a time, corresponding to x[, • • • , x'm. Let Df be the 
closed convex hull of the union of D with these points, and note D' 
is compact (since V is regular). Apply Theorem 3 with D' in place 
of C, obtaining x such that for all tf'G-D', (x'—#»ƒ(#')) = 0, We now 
show xÇzD. Suppose not. Since obviously 0£.D, and V is regular, 
there exists a real t, with 0<t<l, such that tx(£D; since D' is convex, 
txÇzD'. Now, (tx—xt /(fcxO)èO; multiplying by (t — l)~H, which is 
negative, we see (tx, f(tx))^0, contradicting txÇ£D. 

Notice that Theorem 4 is easily modified to cover the case of multi­
ple-valued ƒ. 

In order to see the connection between Theorems 3 and 4 and 
earlier work on "monotonicity methods" and applications, it is neces­
sary to make an interpretation of the vector x. If the set {(xa, ya)} 
(resp. the graph of ƒ) is a maximal monotone set, then the interpreta­
tion is simple: the point (x, 0) of VX V1 is contained in the set; in the 
"function" case, this means f(x) = 0. See [14] concerning the maximal 
monotonicity of the subgradient of a convex functional, and [7] for 
interesting maximal monotone sets in Hubert space. Another way 
of seeing the "meaning" of x is provided by the following lemma: 

LEMMA 1. Let V, V1, and ( , ) be as before, let V1 be topologized so 
all of (x, • ) are continuous, let C be a convex set in V (which need not 
be closed or compact) and let f: C—>VX be monotone, single-valued, and 
hemicontinuous in the sense of Browder (i.e., the restriction of f to any 
line-segment in Ç, taken with its "natural" topology, is continuous). 
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Then the sets S - { x : x G C , and f or all x ' S C , {xf —x, f(xf)}^0} and 
T~ {xixÇiC, and for all x' £ C, (xf—x, f(x) ) ̂  0} coincide. 

PROOF. (Both the Lemma and its proof are essentially due to Brow-
der—it is virtually the same as Lemma 1 of [3] except for context.) 
The inclusion TC. S follows from the mono tonicity of ƒ ; the other inclu­
sion is obtained from x, # ' £ C , 0 < / ^ l , by noting x+t(xf—x)ÇzC 
and taking the limit as t—»0 in the inequality t~1(x+t(x'—x)--xf 

f(x+t(xf-x)))^Q. 
(It is extremely important, for applications, t h a t / n e e d not be con­

tinuous in the topology of V corresponding to the compactness in 
Theorems 3 and 4. For example, in Hubert space, this enables us to 
work with a weakly compact set and an ƒ which is continuous in the 
norm topology but not the weak topology.) 

Thus, under the hypotheses of Theorem 4 (or Theorem 3) and 
Lemma 1 taken together, we have an existence theorem for a solu­
tion of the "variational inequalities of Stampacchia-Lions type" 
(xf—x, / ( x ) ) â O ; note these are nonlinear inequalities. The Lemma 
gives us the further information that the set of solutions is a closed 
convex set, since 5 is obviously such a set. We note, as Stampacchia 
and Lions did, that if C is a closed linear subspace of Hubert space V, 
then the inequalities imply / (x )GC x , and if C is all of V, they imply 
f(x) = 0; further development of this idea is left to the reader. 

4. Another convexity theorem. The writer believes that when this 
theory is put in "final form," the notion of "maximal monotone set" 
will be a central one, with "hemicontinuity" relegated to the secon­
dary rôle of a tool for proving maximality. We therefore give another 
theorem which seems to be a relative of Lemma 1 above, and would 
be useful in that context. A set is called "antimonotone" if it satisfies 
the definition of "monotone," but with the inequality reversed. 

THEOREM 5. Let V and V1 be vector spaces over the reals% and ( , ) 
be a bilinear form as before. (No topologies are assumed on V and V1,) 
Let E and F be maximal monotone and antimonotone sets y respectively, 
in VX V1, and let S be the intersection, with (x±, yi) running through E and 
fa, y%) through F, of the sets {(x, y) : (x%—x, yi—y) — (#2—x, y%—y) è 0 } . 
Then S coincides with EC\F. 

PROOF. I t is trivial to show (EC\F)<ZS. Consider (x, y)(ES, and 
suppose this point is not in F. By maximality of F, we obtain (#2, 3̂ 2) 
£F with 

(x2 - x, y2 — y) > 0. 
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Thus for all (xi, yi)ÇzE, we have (xi—x, yi—y) strictly positive; but 
then by the maximality of E, (x, y) must be in E, and hence 
(x—x, y—y) is strictly positive—a contradiction. The same argu­
ment, with some signs changed, shows SQE. 

This theorem asserts, among other things, that EC\F is a convex 
set. As a sample application, consider the "Nonlinear Hammerstein 
Integral Equation" x+Kfx = 0 in an abstract Hilbert space, and 
suppose the graphs of K and ƒ are maximal monotone sets. (The 
existence theorem for a solution is considered in [S].) Observe that 
the sets {(x, y) : y =ƒ(#)} and {(x, y) : x = — Ky} are maximal mono­
tone and antimonotone sets, respectively, and that the set of solu­
tions of the equation is a projection of this set; hence the solution set 
is convex. 

Added in proof. A variant on Theorem 2 which matches Theorem 5 
is as follows: 

THEOREM 6. Let {{xi ,yl)} and {(xj', yj' )} be finite monotone and 
antimonotone sets, respectively. Then there exists 

(*, y) E K[(xi + xj')/2, (yi + yj')/2] 

such that for all i, j we have (x{ —x, yi —y) — {xj' —x, yj' —y)^0. 

PROOF. Let 

aw = (xi - {xi + x[')/2, yi - (yi + (yi + y(')/2) 

- (xj'- (xi+x{ )/2, yj'- (yi+y{')/2). 

A routine but laborious calculation shows that a^i+ûtoH/èO; the 
rest of the proof is like that of Theorem 2. 

L. Nirenberg has observed that the methods of Hartman and 
Stampacchia ([16, Theorem l . l ] ) are applicable to problems of the 
type considered here, and F. E. Browder [17], [18] has developed 
further the methods of the present paper. 
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