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1. The elliptic curve 

TD:X*+ F 3 = DZ\ 

where D in a cube-free positive integer, admits complex multiplica­
tion by ( — 3)1/2. By the Mordell-Weil theorem, the group of rational 
points on TD has a finite number of independent generators of in­
finite order, g say. The zeta-function of TD has the form 

r(s)r(s - I)/LD(S), 

where f(s) is the Riemann zeta-function and LD(S) is a Hecke L-
series. Denote by LD(s) the derivative of LD(S) with respect to s. 

This note is a description of some numerical results obtained for the 
values of L D ( 1 ) and LD(1) for many D, with special reference to the 
conjectures of Birch and Swinnerton-Dyer, [ l ] . In particular, when 
g = l, the value of LD(1) is compared with a canonical measure for 
the density of the rational points on TD. With the aid of further 
computations of second and third derivatives of LD(S) for a few 
values of D, a relation can be conjecturally formulated as 

LD°\l)/f = «IY*M 

Here, ƒ is a product of factors due to "bad" primes, y the order of the 
Tate-Safarerië group, K the inverse of the measure of the density, and 
t\ the number of points on TD of finite order. 

2. The conjectures of Birch and Swinnerton-Dyer, [ l ] , are stated 
for general elliptic curves, especially for those which admit complex 
multiplication. They will be restated here for the curve TD only. 

CONJECTURE 1. LD(S) has a zero at s~ 1 of order precisely g. 

For all cube-free D of the form 2r3*M, where r, s = 0, 1,2 and where 
M is such that the product of its distinct prime divisors (5^ 2, 3) is 
less than 100 (676 D in all), the values of L D ( 1 ) and LD(1) were com­
puted from approximation formulae. I t can be shown that Lp(l) is 
the product of a rational integer and a predictable factor, so that any 

1 These results are part of the author's doctoral thesis submitted to Manchester 
University, England, in 1965. The author wishes to thank Dr. B. J. Birch for his 
guidance. 
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reasonably good approximation is sufficient. The value of LD(1) when 
LJD(1) is nonzero can be found explicitly by using the functional equa­
tion; hence the error involved in the approximation formula could 
be calculated for those D and was found to be within ±0.1%—but 
the difference between actual and computed values was never more 
than 0.01. The group of rational points on TD has been determined 
explicitly by Selmer [5], for all D <500 and his method of 3-descents 
has been used for all J9>500 of the above form. 

Within the experimental errors already referred to and for those 
curves where g could be determined, it is found that : 

(1) L D ( 1 ) = 0 if and only if g e l ; 
(2) LÎ)(1)=0 if and only if g ̂  2. 

A summary table is included in §4. 
The "integer" property of L D ( 1 ) leads to the construction of the 

analogue of the Tamagawa number, r , for the group of rational 
points on TD, in precisely the same way as Birch and Swinnerton-
Dyer constructed it for the curves with complex multiplication by 
( - 1 ) 1 ' 2 . Essentially 

r = f/LD(l), 

where ƒ is a factor due to "bad" primes. 

CONJECTURE 2. Let 7] be the number of rational points of finite order 
on TD and let y be the order of the Tate-SafareriZ group of TD- Then 

Lv(l)/f = Y/V « 1/T. 

When g = 0, the computed values of L D ( 1 ) support this conjecture 
in the sense that 7 is the square of an integer and that 7 is divisible 
by exactly the right powers of 2 and 3 whenever it is easy to check. 
There is further corroboration when the curve isogenous to TD is 
also considered; for then the 7*s, for any particular D, differ only by 
a multiple of an integral power of 9. In fact, for most of the curves 
TJD, and the curves isogenous to F D , 7 is 1; the other values found are 
4, 9, 16, 25, 36, 81 and 144. 

3. I t remains to give an account of the interpretation of the non­
zero value of i i ) ( l ) , when g = l, in terms of the canonical heights of 
the basic generators; for an account of the Tate-Néron canonical 
height, see Néron [3], or Cassels [2]. 

For the curve T D , an explicit formula for the Tate-Néron height 
of a rational point has been given by Birch (unpublished). By means 
of a birational transformation, TD may be rewritten in the general 
form for an elliptic curve : 

TD:y*z = x% - 2 4 3 8 W , 
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Suppose TjD has a point (x, y, z) where x, y and z are integers in their 
lowest form. Denote (x, y, z) by P(u) where u is a real elliptic argu­
ment such that 

x 
&(u) = — ; 

223Z>2 / 828 

here, p(u) is the Weierstrass P-lunction satisfying 

S>'20) = 4*'(«0 - 1. 

Write (xn, yn, zn) for the coordinates of the point P{nu). Then the 
canonical height h(u) may be defined as 

h(u) = lim — max ( | xn |, \yn |, | z„ |). 

If # is an integer such that (xn, 6D) = 1, then explicitly 

where <r(u) is the Weierstrass &4unction; the right-hand side is well 
defined, is independent of n, and behaves like a quadratic form. 

Hence, if TD has g generators, P(wi), • • • , P(u0)9 say, there exist 
ha (h j —1> • • • » g) such that for all ai, • • • , a0, 

l(fli«i + • • • + ÜQUQ) — 2 ^ hijaidj. 

The inverse of the determinant, det(fe#), is then a good measure for 
the density of rational points on the curve; the value of the determi­
nant for TD is denoted by /c. 

There are a large number of curves with g = 1 ; all the numerical 
evidence points to 

LDO)// = Y K M 

In order to see how this formula generalizes, Z $ ( l ) was computed in 
four cases when g = 2 and one when g = 3. The accuracy for these 
derivatives is bad (about ± 2 % ; it can be determined by using the 
functional equation in much the same way as before), but, within 
these terms of error, there are reasonable grounds for supposing that 

l£\l)/f - gly*/*i*. 

In terms of Conjecture 1, which may be restated as 

LD(s) ~ C(s - 1)*, 
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this means that 

this is in essence a formula suggested by Tate and others, by analogy 
with the work of Ono [4]. 

The values of 7 which occur in the one generator case are usually 
1, but there are cases when 7 is 4 or 9. The power of 3 in 7 (or lack 
of it) is always predictable and in some cases so too is the power of 2. 
All the results are consistent with the conjectures. 

4. The numerical evidence relating to the order of the zero of 
LD(S) a t s = 1 is summarized below in Table 1. I t was not possible in 
every case to determine g. The curves headed g ^ l are thought in 
fact to have g = 1 with a large basic solution (corresponding to a large 
value of Lj)(l)); the curves headed g ̂ 2 are thought to have g = 0, 
despite everywhere locally possible descents. The latter have the con­
jectured value of 7 divisible by 9 both for the curve Tjo and its iso-
genous curve. 

I t is impossible to show how compelling the evidence is which 
relates L'D(1) and /c, when g = l, without presenting a full table. At 
present, may it suffice to say that r}2L'D(l)/fy ranges from 0.298 to 
over 200; in almost all cases where it is less than 50, the generator has 
been found and K turns out to be correct within + .01 . For K = 5 0 the 
value of X in the basic solution will be of the order 1032» 

I t is hoped that full details will be published soon elsewhere. 

TABLE 1 

No. of curves considered with g = 0 1 2 3 ^ 1 ^ 2 
No. of curves with L D ( 1 ) ^ 0 , L Î > ( 1 ) ^ 0 262 0 0 0 0 16 
No. of curves with LJD(1)=0,L1)(1) 5^0 0 297 0 0 43 0 
No. of curves with L D ( 1 ) = 0 , L J > ( 1 ) = 0 0 0 56 2 0 0 

REFERENCES 

1. B. J. Birch and H. P. F. Swinnerton-Dyer, Notes on elliptic curves. II» J* Reine 
Angew. Math. 218 (1965), 79-108. 

2. J. W. S. Cassels, Survey Article: Diophantine equations with special reference 
to elliptic curves, J. Jondon Math, Soc. 41 (1966), 193-291. 

3. A. Néron, Quasi f onctions et hauters sur les variétés abêliennes, Ann. of Math. 
82 (1965), 249-331. 

4. T. Ono, On the Tamagawa number of algebraic tori. Ann. of Math. (2) 78 (1963), 
47-72. 

5. E. S, Selmer, The Diophantine equation axz-hbyz+czi^0t Acta Math. 85 
(1951), 203-362. 

UNIVERSITY OF EAST ANGLIA, ENGLAND 


