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1. Introduction. A smooth manifold M admits many different Rie-
mannian structures. The "symmetry" of a fixed Riemannian struc­
ture v on M is usually called the group of isometries of p, and denoted 
by ISO(z>). It was proved by S. B. Myers and N. E. Steenrod [8] that 
the group of isometries, ISO(z>), is always a Lie group that acts 
differentiably on M. If M is compact then ISOW is also compact. 
The dimension of ISO(*>) provides a rough measure of the degree of 
symmetry of the given structure v. One is tempted by examples to hope 
that a Riemannian metric which arises naturally will be the best one 
in the sense that it is the most symmetric among all possible Rie­
mannian structures. In other words, the isometry group of the natu­
ral metric will have bigger dimension than the isometry groups of all 
other metrics. 

The following classical theorem in Riemannian geometry shows 
that the natural metrics on spheres and projective spaces are, indeed, 
the most symmetric metrics: [l, p. 239]. 

"If dim M = m, then dim ISO(*0 ^m(m+l)/2 for any Riemannian 
metric v on M; and dim ISO(z>) =m(m + l)/2 if and only if M = Sm or 
Pm and the metric v is the natural metric." 

However, if we look at those classical homogeneous spaces other 
than spheres and projective spaces, we shall find that the dimension 
of the isometry group of the natural metric is far less than the bound 
provided by the above classical theorem. For example, let M — Vn,2 
=SO(»)/SO(»-2), then 

dim M = 2n~3 but dim ISO(*>) = dim SO(»)XSO(2)=a(n-l)/2+l 

for the natural metric v on F„,2. Hence the bound provided by the 
above theorem, J(2w —3)(2w — 2), is approximately 4 times bigger 
than the dimension assumed by the natural one, namely %n(n — l) + 1 . 

The purpose of this paper is to show that "the natural Riemannian 
metric on F„f2 is indeed the most symmetric metric." We state it 
more precisely as the following. 

THEOREM. Let Vn,2 = SO(n)/SO(n — 2) be the second Stiefel manifold, 
with n odd and > 20. Then 
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dim ISOOO ^ }*(* - 1) + 1 

for every Riemannian metric v on Fn,2, and the equality sign holds only 
when v is the natural metric. 

Since every isometry group, ISO(p), is a compact subgroup of 
Diff(Fn,2), and on the other hand, every compact subgroup of 
Diff(F„,2) may be realized as a group of isometries with respect to a 
suitable metric; the above theorem may be restated equivalently as 

THEOREM' . If G is a compact subgroup of the group of all diffeo-
morphisms of Vn,2, Diff(Fw,2), n odd and >20 , then either G = SO(ft) 
or SO(w)XSO(2) and is transitive; or dim G<n(n —1)/2 and is in­
transitive. 

REMARK. The restriction that n be odd is purely technical. The 
relative simplicity of the rational homology group of Vn,2 in the odd 
case is the main reason. Actually, we strongly believe that a similar 
theorem should be true for much more general classes of homogeneous 
spaces. We did not push our method to its limit since we feel that our 
method may not be suitable to treat the general problem of this type. 
Our purpose in publishing this note is to show the existence of prob­
lems of this kind rather than to demonstrate the method of proof. 
I t is the author's sincere hope that someone will invent new methods 
for the study of symmetries of geometric structure. 

2. Proof of the theorem. Our proof heavily relies on the results of 
[2], [4], [5] and technically we may regard this note just as an ap­
plication of the results of [2], [4], [7]. In order to apply the results of 
[4], we need the following proposition: 

PROPOSITION 1. Let G/H be a homogeneous space with G = GiX • • • 
XG8 acting almost effectively on G/H; where Gi are simple compact Lie 
groups. Suppose we have 

dim H > r-dim (G/H) r > 4. 

Then there is at least one normal factor, say Gi, that is locally isomorphic 
to one of the following groups: 

(i) SO(Z);Z>2r+2 or 
(ii) S U ( 0 ; Z > 2 r + l or 
(iii) Sp(t); l>2r. 

The above proposition may be proved by induction on the number of 
factors s. A detailed proof may be found in another paper of the 
author [6]. 
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PROOF OF THE THEOREM. In case G acts transitively on Vn%% it was 
proved in a joint work of J. C. Su and the author that G must be 
either SO(w) or SO(rc)XSO(2) with the usual action [7]. 

Now, we suppose that G acts intransitively (of course effectively 
and differentiably). Let G/H be the principal orbit type, then it is 
clear that G acts effectively on G/H. We shall show that dim G 
< n ( n - l ) / 2 . 

Suppose the contrary. Then we have dim G^n{n —1)/2 and 
d i m ( G / i î ) g ( 2 w ~ 3 ) ~ l = 2 w - 4 . Hence 

dim H^(n2-n)~(2n-4:)>%(n'-2)(n--4:)^l(n-4:) dim (G/H) 

where r = (n — 4 ) / 4 > 4 for n>20. Hence Proposition 1 applies and we 
have that G~GiXG 2 with 

(i) G i~SO(0 , Z>Jn, or 
(ii) G i ~ S U ( Q , Z > 4 » - l f or 
(iii) G r - S p ( Z ) , Z > ^ - 2 . 

Since Fn,2 is a stably parallelizable rational homology sphere of di­
mension (2n~3), the results of [4] apply for a detailed analysis of 
the action of Gi on Fw,2. We shall divide our argument into three 
cases according to Gi^SO(Z) or SU(Z) or Sp(Z) respectively. 

(i) Gi^SO(Z), l>\n\ In this case, the principal orbit type of the 
Gi-action on Fn,2 has three possibilities, namely SO(/)/SO(/ — 1), or 
SO(Z)/SO(Z-2), or SO(Z)/SO(Z-3). Following an argument of [2], 
[5] we may show it is impossible to have a compact connected group 
G acting on Fn,2, n odd, with Sk

y k^l, 3, as principal orbit type. Now 
suppose the principal orbit type of the Gi-action is SO(Z)/SO(Z —2). 
Then it follows from [4] that the dimension of the fixed point set 
dim F(Gi, Vn,2) ~(2n — 3)—2Z^ —1 and the orbit space is naturally 
a [(2n — 3) — 2Z+3]-dimensional manifold X with dX being the image 
of singular orbits. If F(Giy Vn,2) = 0 , then l = n — 1 and by consider­
ing the action of G2 on dX, we see that dim G2S2. Hence dim G 
= = d i m G i + d i m G 2 ^ ( ^ - " l ) ( w - 2 ) / 2 + 2 < ^ ( w - l ) / 2 , which is a con­
tradiction. If F(Gh F n , 2 ) ^ 0 , then G2 acts on F(Gi) V»l2). Let 
xÇzF(Gi, Vnfi), then Ga. = GiXG2a.. By looking at the local representa­
tion <f>x of Gx with the knowledge that <j>x\ Gi = 2*pi®0 dim $a. = 2?z —3, 
l>n/2, and the representation of G2a! cannot have 5&, fe^l, 3, as its 
principal orbit type; we may have a good estimate of dim Gix. The 
answer is 

dim Go, ^ i ( 2 ( » - 0 - 3)2. 

Now, 
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dim G = dim Gi + dim G2* + dim G(x) 

â m - D + Win - O - 3)2 + (2(** - / ) - 3 ) 
< \n(n - 1) for w < Il g 2w - 3 

which is a contradiction. 
The argument for the case that the principal orbit type of the Gv 

action is SO(Z)/SO(? —3) as well as the cases Gi~SU(l) and Gi^Sp(Z) 
are almost the same as the above case, but are a little bit easier and 
hence omitted. 

From all the above contradictions, we proved the theorem. 
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