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In a previous paper [4], a nonabelian cohomology theory for asso­
ciative algebras was proposed for dimensions 0 and 1. The purpose 
of this paper is to extend this theory to dimension 2. The methods 
used are closely analogous to those employed in the corresponding 
theory for groups (cf. [l],[2]). Throughout this paper all algebras will 
be associative algebras over some fixed commutative ring A with 
identity. The term homomorphism without qualification will mean 
homomorphism of A-algebras. 

1. One-cochains and one-cocycles. We consider algebras B and M, 
and homomorphisms p: B—>M, 3>: M—>2flX(J3), where ^ïl(B) denotes 
the algebra of bimultiplications of B (cf. [4],[5]). The system (E 
= (B, M\ p, $) is said to define the structure of an M-crossed module 
on B if the following conditions are satisfied : 

(i) the image of <ï> is permutable on B ; 
(ii) p(3>(m)b)=mp(b), p(b$(m))=p(b)m, for all &£J3, m £ t f ; 
(iii) the composite * p : B—»2fïl(J3) maps each element of B onto the 

inner bimultiplication which it defines. 
We recall tha t a subset S of 9TC(i3) is permutable on B if (£&)rç = %(br)), 

for all & rjGS, b£B (cf. [4],[5]). The M-crossed module B is an M-
bimodule under the action defined by <ï>, and the condition (ii) shows 
that p is a homomorphism of M-bimodules. Moreover p(B) is an 
ideal in M and the quotient algebra L = M/pB has a canonical map 
^ : L—»9flZ(Z), deduced from * , where Z = Ker(p) is called the center 
of the crossed module (B. M and L will be called the operator and 
outer operator algebras of (B respectively. 

Given (B = ( 5 , M; p, * ) , we define a 1-cochain from an algebra A 
to (B to be a pair (p, cf>) of maps p: A-+B, <j>: A—>M and denote the 
set of these 1-cochains by C 1 ^ , (B). Zl(A> <£) is the subset consisting 
of the 1-cocycleSy namely those pairs (p, </>) for which 

<t> is a homomorphism; 

(1) p is a homomorphism of A-modules; 

pfa&i) == p(ai)p(a2) + piaffa) + <KaùP(a2), «i, «2 e 4 . 
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The composition (g, \f/)+(p, <£) in Qx(Ay (B) is defined only if 
^=p£+</>, in which case 

(2) (?,£> + (*, *) = (g+ * , * ) . 
ex(^4, (B) together with this composition form a groupoid. From (1) 
we see that ZX{A, (B) forms a sub groupoid of e 1 ^ , (B). 

2. Two-cochains and two-cocycles. From the algebra A, we define 
F(A) to be the free A-module on the generators { â\a&A}. The map 
a-*a extends to an epimorphism F(A)—>A of A-modules, with kernel 
N(A). Hence ^i\iâiÇ^N(A) for A*£A, a^A, if and only if 22»X*Û^ 
= 0. 

A 2-cochain from 4̂ to (B is defined to be a triple (71, 72, 0) , of maps 

yi:AXA-*B, y2:N(A)->B, <I>:A->M. 

A 2-cocycle is a 2-cochain which satisfies the conditions: 

(I) <Kai)7i(a2, 0a) — Yi(aia2, ^3)+71(^1» ^ 3 ) — 71(^1, ^2)0(a8)=O; 

(II) 22 *m(a> <**) =72( 22 X;aa*) -<^(a)72( 22 M<) î 
* * » 

(III) 22 ^»7i(fl<i <0 ==:72( 22 X*a»a) -72 ( 22 X»5<)0(a) ; 
» i » 

(IV) 72 is a homomorphism of A-modules; 

(V) p72( 22 *i*i) = 22 Xi0(«O î 

(VI) P7I(Ö!, a2) =<j>(aia2) -0(ai)<Ka2) î 

for X^EA, a, ai, a2, a3, a ^ A , 2 2 A ^ G ^ ( ^ ) « 

C2(^4, (B) and Z2 = Z2(^4, (B) will denote respectively the sets of 2-
cochains and 2-cocycles. Note that (0, 0, <t>)(EZ2 iff <£: A—>M is a 
homomorphism. These special 2-cocycles form a privileged subset 
I 2 = I2C<4, (B) of Z2, the elements of which are called neutral. Some­
times a special such <f> is chosen corresponding to a base cocycle in 
Z2 ; if <f> is the zero morphism, then one speaks of the zero-cocycle. 

Every extension E=0—>B—•>»£—><A—>0 of algebras gives rise to a 
commutative diagram with exact rows 

0->B^> E A A -»0 

(3) II J e j * 

where (P(-B) denotes the algebra of outer bimultiplications (cf. [4], [5]), 
and the homomorphism ®: E-*?Kl(B) is given by the multiplication 
in E. If further, B is an Af-crossed module, and we have a homomor-
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phism JU: E—>M such that <£/* = ©, then the couple (E, n) will be called 
an M-extension. We then have a commutative diagram with exact 
rows 

0 - » B -^ E^> A - > 0 

(4) || in lv 

0-> Z -> £ ^ > M - > L - > 0 

and the homomorphism v is called the cres£ of the M -extension. Two 
M-extensions (E, /*), (E', JU') are equivalent if there is a morphism 
E—+E' of short exact sequences which extends the identity maps on 
B and A, and for which the composite homomorphism E—*E'-^*'M 
is precisely p. We denote by Ext («4, (B) the set of equivalence classes 
of ikf-extensions. The crest v in (4) corresponds to a map 

(5) K: Ext (il, (B) -> Horn (A, L). 

(E, fi) is called inessential if £ is cleft, i.e., if there exists a homomor­
phism of algebras t: A—*E such that et = \A\ it is called trivial if E is 
the direct sum algebra of B and 4 , and i(b) = (b, 0), e(Jby a) =a, and 
if M = 0. 

3. Cohomology classes. I t is now possible to define a map ô: 
e 1 ^ ! (B)->C2(4, (B). For (p, ^ G C H i , (B), S(/>, <f>) is defined by the 
equation 

*(fc *) = (*i(fc *)> *«(fc *), *), 

where, for ai, a2G^4, X^Xi^E./VG4), 

*i(& 0)(ai> ö2> = #(aia2) - p(ai)p(a2) - p{a^)<t>{a2) - 4>{a^p{a2)\ 

(6) ô2(p, <t>) ( E X*M = E X*#(a<). 

For (q, pp +4), (£, 0 ) e e x ( - 4 i <B), we obtain from (2) and (6) 

M (?, PP + <t>) + 0 , *)} = *ifa, PP + *) + *i(*, *) , 

M (g, p£ + 4>) + (fc <*>)} - S2(<7, p£ + <*>) + 62(p, <t>). 

Observe from (6) that h(p, <j>) — (0, 0, <£) if and only if the last two 
conditions of (1) are satisfied. Hence, for $ a homomorphism, ô(p, </>) 
= (0, O , 0 ) i f f ( ^ , 0 ) G Z \ U , <B). 

We now define an action A (on the left) of the groupoid Ql(A, (B) 
on the sets C2(A, (B) and Z2(A, (B). This is given by maps 
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A: ex(A9 (B) X C2(A, (B) -> C2(A, (B), 

A: C 1 ^ , (B) X Z2(A, (B) -* Z 2 (^ , (B). 

For (£,</>) G e 1 ^ , <B), (7i,72,<^)GC2(^4, CB), A{ (/>, <j>) Xfri , 72, <t>)} is 
defined to be ( 7 / , 72', <£'), given by the equations 

(8) <t>' = pp + 0, 7i = ài(p, <t>) + 7i, 72 = à2(p, 4>) + 72. 

We easily verify that if (71,72, cj>) ^Z2(A, (B), then so does (71 ,72 , 4>'). 
I t follows from (7) that, under A, e 1 ^ » (B) is a groupoid of left oper­
ators. 

The orbits in Z2(A, (B) under A are called the thick 2-cohomology 
classes, and the set of these classes is denoted by H2(A, (B). This is 
a set with preferred subset of neutral classes (i.e. containing a neutral 
cocycle) and with an eventual base or zero-class (containing the base 
or the zero 2-cocycle). There are also maps k and K' falling into the 
following commutative diagram with canonical horizontal arrow: 

Z2(A, (B) > H2(A, (B) 

(9) * \ ^ y J 

Horn (A, L) 

and such tha t K71, 72» 4>) —^ o <j> with ir: M—>L canonical. 
We see tha t both sets Ext(^4, (B) and H2(A, (B) are provided with 

a privileged subset, an eventual base point and maps K and K' as in 
(5) and (9). One can also show that an abelian group H „(A, Z) acts 
in a simply transitive way on the fibres K~1(V) and K,"1(P) in Kxt(Ay (B) 
and H2(A, (B). Those sets therefore have spider structures in the sense 
of [ó]. Moreover: 

THEOREM 1. There exists a bisection Ext(^4, (B)—>H2(A, (B) which is 
an isomorphism in the category of spiders [ó] and which maps the trivial 
M-extension onto the null class. 

The bijection is given by associating with each extension a factor 
system, which then corresponds to a 2-cocycle. An equivalence class 
of extensions will then correspond to an orbit of 2-cocycles. 

4. Functorial properties. The functorial properties we desire are 
best described by the introduction of the category C. The objects of 
C are the systems (B = {B, M; p, # } of §1. A morphism 
a: {Bu Afi;pi,$i}—>{-B2, M"2;p2,*2} in Cisapaircr:Bi-->B<ils: Mi-~>M2 

of algebra homomorphisms for which p2 0cr = s O p 1 and <r(bm) 
= a(b)s(m), a(mb) =s(m)a(b)1 for all « £ I i , bÇiBi. (We write bm for 
&$i(m), etc.) 
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Every morphism â in C induces a morphism Ql(Ay (Bi)--*©1^» ^2) 
of groupoids, which maps Zl(A, (Bi) into Zl(A> (B2). Under this in­
duced morphism, (p,<f>) G C 1 ^ , <&i) is mapped onto (ap, s<j>) £ &(A, (B2). 
Also, â induces a map Z2(A, (Bi)—»Z2(^4, (B2) which sends (71, 72, 0) 
£ Z 2 ( ; 1 , (Bx) into (0-71, <772, 50). Since 

(10) oSi(p, <j>) = h(vp, s<j>), <?h(p, <t>) = h(crp, stfl), 

the images of two 2-cocycles in the same orbit of Z2(A, (Bi) also lie 
in the same orbit of Z2(A, (B2). Hence a induces a map 2 : H2(A, (Bi) 
-*H2(A, (B2). 

THEOREM 2. For a fixed algebra A, e1 , Z1, Z2 and JÏ2 are covariant 
functors with domain C. The codomain of e 1 awd Z1 is tóe category of 
groupoids, and the codomain of Z2 and H2 is the category of {based) 
spiders. 

5. Exact sequences. A sequence of morphisms in C: 

(11) (Bi -> (B2 -> (B3, (B» = {JB<, Mt-, ph &i\, 

gives a commutative diagram 

<J\ <T2 
0 - > J B I - > J 5 2 - ^ 5 3 - > 0 

(12) I pi i P2 i P3 
Si S2 

Jfi—>M2—>Afs. 

The sequence (11) will be called a short-exact sequence if 
the top row in (12) is an exact sequence of algebras; 

(13) si is an isomorphism of algebras; 

s2 is an epimorphism of algebras. 

The sequence (11) induces the sequence 

(14) H2(A, (Bi) -4 H2(A, (B2) -4 H2(A, (B3). 

THEOREM 3. If (11) is short-exact, then (14) is exact. 

The exactness of (14) is in the sense that, an element of H2(A, (B2) 
is in the image of Si if and only if its image under 2 2 is neutral. 

Henceforth we assume we have a short-exact sequence (11). The 
fibres of the map Si in (14) can then be described in terms of an 
action 0 of Z\A, (£3) on iï2(^4, (Bi). Specifically, we take (71, 72, <£) 
GZ2C4, (Bi) and (p, x//) EZ^A, (B3) such that ^ = s2Si<£. Then lift (p, x[/) 
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to (q, S i ^ G C 1 ^ » ©2) taking q: A-*B2 such that a2q=p. Check that 
A{(<z, SI<£) #(O"I7I, (TI72, 5 I 0 ) } £Z2C<4, ($2) is the image under â\ of a 
(necessarily unique) element (j8i, j82, x)GZ2G4> (Bi), where 

X = ^ 1 ( P 2 â r + ^ ) . 

Check that the class of (j8i, 182, x) is independent of the choice of q 
and define the action 0 setting 

(P, *) 0 [71, 72, <*>] = [ft, £2, x] 

where the brackets indicate the cohomology class of a cocycle. This 
is a groupoid action, defined iff *l/ = S2Si(f>. 

THEOREM 4. J / (11) is short-exact, then the fibres of the map Si 
in (14) are the orbits in H2 (A, (Bi) under the ()-action of Zl (A, (B3.) 

6. The longer exact sequence. Take (B={i3, M; p, *} in C, and 
take <fi: A—>M to be a j t o d homomorphism. Denote by Z\{A, (B) 
the subset of Zl(A, (B) of those elements of the form (p, </>). Z\(A, (B) 
is then endowed with a base point (0, <j>) and with a structure of 
polypus (cf. [ l ] , [4]). In H2(A, (B), the class of (0, 0, <t>) will be called 
<j>-null, and with this as base point, our based set will be denoted by 
H\{Ay (B). 

In a short-exact sequence (11), we can identify B\ with its image 
under en, and Mi, M2 under the isomorphism s% will be denoted by M. 
Let M' — Mz. Take 0 : A-+M to be a fixed homomorphism, and put 
</>' = S2<l>:A-->M'. Then 

*-> zl(A, (Bi) -> Z ^ , (B2) -> Z ^ ( ^ , (B3) 

is an exact sequence of based sets and even of polypi [ l ] . We define 
Z\'(A, (B3)—>H\{A, (BI) to be the map which sends each element of 
Z\'(A, (B3) onto the result of its action (cf. §S) on the </>-null class of 
H\(A, (BI). With this definition we have 

THEOREM 5. If (11) is short exact, then 

*-> zl(A, (Bi) -> zl(A9 (B2) -> Z*'(4, (B3) -> 
(15) A S 2 S 

-» Hl(A, (Bi) -> J9*(4, (B2) -> fl£(4, (B3) 

is &mc£ iw the following sense: an element of Z\'(A, (B3) is iw the image 
of the preceding map if and only if its image under the following map is 
neutral; an element of H%(A, (Bi) (resp. Hl(A, (B2)) lies in the image of 
the preceding map if and only if its image under the following map is 
<f>-null {resp. neutral). 
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I t is also possible to characterize the fibres of all maps in (15) and 
the tricks involved should be incorporated in the notion of exactness. 
The most difficult fibres are those of D2 and, in the case of group ex­
tensions, a method has just been described in [ô]\ it involves a re­
finement of the spider structure on H2 (Ay (£). 
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