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Takeuti [3] showed that the consistency of analysis (i.e. second 
order number theory) is finitistically implied by the Hauptsatz for 
second order logic» i.e. by the proposition that every theorem of this 
system is derivable without cut.1 We will prove that, conversely, the 
Hauptsatz for this system follows from a certain generalization of the 
consistency of analysis; namely from: 

I. Every countable set of relations among natural numbers is included 
in an o)-model. 

An co-model is a collection of relations among natural numbers 
which is closed under the second order comprehension axiom. Henkin 
[l ] has shown that a second order formula is derivable with the cut 
rule if and only if it is valid in all (countable) co-models. 

When the given set of relations consists only of the successor rela­
tion, I asserts the consistency of analysis. 

The formalism for second order predicate logic which we will use 
is obtained from the system of predicate logic of finite order given in 
Schutte [2] by dropping all expressions and bound variables of types 
other than 0 (individuals), 1 (propositions) and (0, 0, • • • , 0) (rela­
tions among individuals). Thus, expressions of type 0 are built up 
from constants and free variables of type 0 using function constants. 
The expressions of type (0, • • • , 0) are constants, free variables and 
expressions Xx? • • • x£4(x?, • • • , x£), where A (a°u • • • , a£) is a wff 
(expression of type 1). The logical symbols other than X are —*, v 
and V. 

The notation and terminology of [2] will be assumed. In particu­
lar, the notions of strict derivation and partial valuation will be the 
same as in [2], except that they refer to the second order logic and 
not the full system of [2], and that we require of a partial valuation 
that whenever VxTA(xT) is true (t), then so is A{aT) for some free 

1 Actually, Takeuti asserts this result, not for second order logic, but for GlLC 
which contains constants and free variables for third order relations. His proof how­
ever is valid for second order logic. On the other hand, the proof of the result of 
this paper cannot be extended to GlLC, as far as I know. 
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variable ar (and not simply for some expression of type r, as in [2], 
6.1.5). With this modification, the proof of [2], 6.5 still goes through 
(since the partial valuation actually constructed satisfies our stronger 
condition); and so from 5.6 and 6.5: 

II . If a wff is not strictly derivable, then there is a partial valuation 
in which it is false (ƒ). 

Since derivability without cut is equivalent to strict derivability 
(see [2], p. 306), we can prove the desired result by showing that 
every wff which is false in some partial valuation is also false in some 
co-model (for certain values of its constants and free variables). Of 
course, if we identify the terms of type 0 with the integers =^0, then 
a total valuation is an co-model. Hence, we need only consider proper 
partial valuations, i.e., ones which are not total. 

Let & be a free variable of type 9^0. Tha t is, & is a propositional 
variable or else it ranges over relations among individuals. To each 
wff A we assign the expression Ab, which is either a wff or else the 
symbol <j>, as follows: If A is prime and contains b, then it is of the form 
b (if b is of type 1) or (e?, • • • , e%&). In this case (±A)b=<j>. ± re­
fers of course to A and —rA. If A is prime and does not contain b, 
then ( ± , 4 ) 6 = ±A. (-r-rA)b = -->-rAb if 4 V 0 ; otherwise, (-r-rA)* 
=<£. (AvB)b = AbvBb, Ab

y Bb or <£, according to whether Ab^<f>^Bb
i 

4 5 ^ = 56, Ab=$-*&> o r Ab=^ = Bb^ r e s p # (-r(AvB))b = -r(A1vB1) if 
(-rAY^-rAx and (—B)b = -rBx. If either (—A)b or ( - J3 )*=0 , then 
(—r(AvB))b=4>- (VxB(x))b = VxB(x)b or <j> according to whether A{c)b 

j*<t> or A(c)b=4>. (Here c is chosen j*b.) (-^VxB(x))b = -rVxB1(x) if 
(—B(x))b = — Bi(x). If (-T B(x))b = 4>, then (^VxB(x))b = 0. 
(eu • • • , enÇ\xi • • • xnB(xu • • • , xn))

b = (ei, • • • , enGXxi • • • 
xnB(xu • • • , xn)

b) or <£ according to whether B(xi, • • • , Xn)b9^<f> or 
=<j>. Finally, (—"(«î, • • • , en E Xxi • • • x„B(xi, • • • , xn))) 
= —'(^I , • • • 1 en£X»i • • • x»Bi(aci, • • • , xn)) or </> according to 
whether (-^B(xi, • • • , xn))

h =—rBi(xi, • • • , xn) or =<£. 

Let &r = & be fixed ( r^O) , and let A(x) denote the result of replac­
ing all occurrences of b in the wff A by xT = x. 

III . Let Ab be 7*<t> and be satisfied in the co-model M for certain values 
assigned to its constants and free variables. Then kxA(x) is satisfied in 
M by the same values. 

The proof is by induction on A. If A is prime then it does not con­
tain b (since Ab9^<i>), and so KxA(x) is logically implied by Ab = A. If 
A =A\vA2, then for i = 1 or 2, A] is satisfied, and so by the induction 
hypothesis, so is AxA »(#), from which AxA (x) follows. If A = —r(A\vA^), 
then —rA\ and —rA\ are satisfied, and hence, so are Ax—TA\(X) and 
kx—rA^x), from which AxA(x) follows. If A =z~-r—rB, then Bb is satis-
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fied, and hence so is AxB(x) from which Ax A (x) follows. If A = VyB(y), 
then B(c)\ is satisfied for some value of c (chosen T^b), and so AxB(c, x) 
is satisfied for this value of c. Therefore, AxA(x) =AxVyB(y, x) is 
satisfied. If A ~—rVyB(y), then —rB(c)b is satisfied for all values of c, 
and hence, so is Ax—rB(c, x). Therefore, AxA(x) =Ax—rVyB(y, x) is 
satisfied. If A = ±(tfi, • • • , en£Axi * • * xnB(xi, • • • , xn)), then 
±B(ei, - • • , #n)& is satisfied, and hence, so is Ax±B(ei, • • • , £ „ , # ) , 
from which A#-4(#) =A#±(e i , • • • , enÇ\x\ • • • %nB(x\, • • • , xn, x)) 
follows. 

The <fe/>£% dA of the variable 6 in the wff A is inductively defined 
as follows: If b does not occur in A, then dA = 0. Assume that b does 
occur in A. If 4̂ is prime, dA = l. If ^4=5z;C, dA=dB+dC+l. If 
i4 =- r J5 , A4 =dB + l. UA = VyB(y), dA =dB(c) + l (choosing c^b). 

If A = (ei, • • • , en G Xxi • • • xnB(xu • • • , xn), then d̂ 4 
— dB{cu • • • , c„) + l (choosing c^b). 

Using the same notation as in III : 
IV. If V is a partial valuation which is not total, and VxA (x) is ƒ in 

Vy then so is Ab(9^<t>). 
Since V is not total, there is a wff F to which V assigns no truth 

value. If r (the type of b) = 1, set e = Fy and if r = (n, • • • , r n ) , where 
each rt- = 0, set e=\x\ • • • xQ

nF. Then since Fx^4(#) is f, so is A(e). 
By induction on the depth dA of b in -4=^4(&), we prove that if 
A{e) is f in V, then so is Ab. We can assume here that no wff to which 
V assigns a value contains b. If dA = 0, then b is not in A, so that 
4̂& = ,4 =,4(e). dA = l is impossible, since otherwise A(e) is either e 

or else is of the form (ei, • • • , enG^), and so A(e) has no value for V. 
Assume dA>\. If A=AivA2l then 4i(e) and A2(e) are f, and since 
dAi<dA, it follows from the induction hypothesis that A\ and A\> 
are f. Hence, ^46 is f. If A——T(A\VAÏ), then —rAi(e) is f for some 
i = l , 2, and so —^4? is f (since dAi<dA), and hence, so is Ab. If 
A =—r—rB, then J3(e) is f, and so since dB<dA, Bh is f. Hence, Ab is 
f. If A = Vy^Biy*), then for all e°, B(e, e°) is f. Since e° does not con­
tain b, dB\e°)<dA, and so B(e°)b is f. Hence, A = VyaB(yff) is f. If 
A——rVy°B(y°), then for some variable c* with c°?£b, —rB(ca) is f. 
Since d-rB(cff) <dA, (-*B(c*))6 = -TB^C') is f, and so Ab = — Vy'Bxiy') 
is f. If -4 = ±(«i, • • • , e » G t e ' " ffJ3(#i, • • • » *n)) then 
± J5(ei, • • • , en, e) is f, and since d±B(ei, • • • , tfnX — ̂  + ^^i» • ' * > 
^n, 6)) < A 4 , (±B(ei, • • • , £w))& is f. Hence, 4̂& is f. 

Let F be a partial valuation which is not total. If ƒ is a function 
constant of n arguments, we se t /* = {(ei, • • • , en,f(ei> • • • , £w)) : all 
expressions ei, • • • , en of type 0 } . If a is a constant or variable of 
type (0, • • • , 0) (n arguments), we set a*= {(eu • • • , en): 
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(ei, - - • , e n Ga) has the value / for V}. If a is a constant or variable 
of type 1, we set a * = t if V assign a t, and otherwise a* = f. If we 
identify the expressions of type 0 with the integers ^ 0 , then, by I, 
the relations ƒ* and a* are included in an co-model M. 

V. If A is t(f) in V, then it is t(f) in M, with f denoting f * and a 
denoting a*. 

We prove this by induction on the number of occurrences of logical 
constants in A. HA is prime, the result is clear. If A = LB or BvC, 
the result follows by the induction hypothesis applied to its com­
ponents. Let A = Vx°B(x°). If A is true in V, then so is B(a°) for 
some a0; and so B(a°) is true in M, and hence, so is A. Il A is false 
in V, then B(e°) is false in V, and so in M, for all e°. But since the 
domain of individuals of M consists of the e°, A is false in M. Let 
A = VxTB(xT) where r ^ O . If A is true in V, then so is B(aT) for some 
variable aT, and so B(ar), and hence A, are true in M. If A is false 
in V, then by IV, so is B(bT)hT (choosing bT not in A), and so B(bT)bT 

is false in M by the induction hypothesis. Therefore, by III, A is 
false in M. Let A = ± (ei, • • • , en£X#i • • • xnB(xi, • • • , #»)). Then 
if A is t (f) in V> so is ±jB(ei, • • • , en). Hence ±B(ei, • • • , en) is t 
(f) in Af, and therefore, so is A. 

THEOREM. If A is derivable, then it is derivable without cut. 

If A is not derivable without cut, i.e. strictly derivable, then there 
is a partial valuation V in which it is false. If F is a total valuation, 
then A cannot be derivable by [2, 7.4]. If F is not total, then by V, 
there is an co-model in which A is false, and so, in any case, A is not 
derivable. Q.E.D. 
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