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The purpose of this paper is to demonstrate the existence of higher-
dimensional smooth slice (or O-concordant) knots of spheres in spheres 
with generalized Alexander polynomials which are not symmetric 
and which do not factorize. In particular, this provides a negative 
answer to questions B and C of Hirsch and Neuwirth [l, Part I I ] . 
The method is then extended to provide a generalization of the results 
of Levine [2]. 

1. Algebraic theory. Consider an Abelian group A which is finitely 
generated as a module over the group ring JZ of the infinite cyclic 
group Z(t) (generated by t). An mXn matrix M=(m*y(0) whose 
entries are polynomials in t (integer coefficients) is said to present A 
as a module if there exists an exact sequence of JZ modules 

F2 -* Fi -> A -> 0 

where F\ and F2 are free JZ modules on (xi, • • • , xn) and (ri, • • • , rm) 
respectively, and d2(ri) = X)?-i w>ij{t)Xj. See [3]. 

2. Generalized Alexander polynomials. A smooth w-knot is a 
smooth sphere pair (Sn+2, Sn). If Ti(Sn+2-Sn) = G, and G'=com-
mutator subgroup of G, then the universal Abelian covering space 
X of the knot complement Sn+2 — Sn is the regular covering space 
corresponding to G'. Tha t is, wi(X) =G', and the group of covering 
translations is the Abelian Group G/G' — Z(t). The chain groups of 
X, and hence the homology groups Hj(X) are finitely generated as 
modules over / G / G / = J rZ(0, and have presentation matrices My, for 
all j (See [ l ] ) . In the terminology of [3], if eiU) is the 1st elementary 
ideal of M3- and €io> is a principal ideal, then define the j th dimen­
sional Alexander polynomial Aj(t) — generator of €io> If Mj is square, 
then Aj(t) = \MJ\, the determinant of Mj. When j = 1, the polynomial 
is the usual Alexander polynomial [4, p. 353]. Also, one can easily 
define a whole sequence of generalized Alexander polynomials in 
dimension j , each one corresponding to a higher elementary ideal of 
the presentation matrix Mj (See [2].). 

1 Supported by a Marshall Scholarship. 
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3. The theorems. In the following, a smooth slice knot is a smooth 
sphere pair (5W+2, Sn) which bounds a smooth ball pair (J3n+3, Bn+1). 

THEOREM 1. If n^2, and | SjSn/2, there exist smooth slice knots 
(5 n + 2 , Sn) with ith dimensional Alexander Polynomials A^(0, 1 ^i^jt 

such that: 
(i) A,(0 = 1 l£i<j. 
(ii) Aj(t) is not symmetric (àj(t) ^ ±taAj(l/t), any a). 
(iii) Aj(t) does not factorize (there exists no polynomial F(t) such that 

Aj(t) = ±tf*F(t)F(l/t), some /3). 

PROOF. The proof is based on the construction in [5] which gives 
knotted ball pairs in unknotted sphere pairs. The slice knots we are 
interested in will in all cases be the boundary of a constructed ball 
pair. In many cases the ball pairs will be precisely those obtained in 
[S], and the method of construction is exactly the same, but without 
the worry of embedding the ball pair in an unknotted sphere pair. 
The method may be described as follows : take an unknotted ball pair 
( 5 n + 3 , Bn+1), and add a solid j-handle to Bn+Z — J3W+1 by a trivial 
S*-1 embedded'mS^-S^^diB^-B"*1). Then if 2S>(B»+»-.B»+1) 
\Jhj, Kc^Sl\/SJ' (~denotes homotopy equivalence) and dKo^Sl\/S3' 
\ySn+2~K For j> 1 let a^Tj{dK) represent the homotopy class of the 
inclusion map of S1' in 51V5'?'V5n+2"~;/', and t represent the action of 
the generator of 7Ti(dK) on Tj(dK). When j = l, let a represent the 
path around the handle hl and j3 the path around the Sn. One adds 
a handle h*+l whose attaching sphere S]' represents the element 
2a —ta in Wj(dK)(j>l), or the element a2$ürlfjrl in the case j = l. 
This yields a knotted ball pair with boundary a knotted slice sphere 
pair. 

The proof falls into two cases: 
Case 1 : j = 1. The construction gives a smooth slice knot (5 n + 2 , Sn) 

such that 7Ti(5n+2 — Sn) = (a, 01 a^a~l^~l). The Fox free derivative 
process [ó] gives us Ai(£)=2— t, when Abelianization sends ce to 1 
and j8 to /. This means that a result of Fox and Milnor [7] fails to 
generalize to higher dimensions, and gives us smooth slice knots 
which are not invertible and not +-amphicheiral (in the sense of [6]). 
Also, it proves that Neuwirth*s group of knot groups [8, Chapter 8], 
is nontrivial for n^2. 

Case 2: j > l . The construction can again be used to produce a 
smooth slice knot (5W+2, Sn) such that 7n(Sn+2 - Sn) =Z(t), iri(Sn+2 - Sn) 
= 0, Ki<j> and Tj(S

n+2-Sn) = (tia\2a-ta). This means that 
7Ti(X)=G/ = 0, and the Hurewicz Isomorphism Theorem implies 
Hj(X)=Tj(X)=Tj(S

n+2-Sn). The matrix presenting Hj(X) as a 
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module over JG/Gf^JZ(t) is the 1X1 matrix ( 2 - 0 , so Ay(0 = 2 - J . 
When j = n/2(n even) this answers questions B and C of Hirsch and 
Neuwirth [l ] in the negative. 

In fact, the construction allows us to prove the following: 

THEOREM 2. For n^2, l ^ j ^ n / 2 , and given any polynomial F(t) 
such that -F(l) = ± 1 , then there exists a smooth slice knot (Sw+2, Sn) 
with Alexander polynomials A »•(/), 1 ̂ i^j, such that Aj(t) = F(t). 

PROOF. The construction and reasoning is exactly the same as in 
Theorem 1, with the polynomial F(t) becoming a relation in the 
appropriate homotopy group. 

Case 1: J > 1 . Construct the knot as in Theorem 1, but attach hi+l 

by the element F{t)a instead of 2a — ta. This yields a slice knot such 
that 7Ti(S*+2-S*)=Z(/), 7T;(S"+2-S>)=0, Ki<j, and 7ry(S*+2-S") 
- (/'a | F(t)a). Clearly Ay(/) - F(t). 

Case 2: j = 1. (I would like to thank Dr. J. F. P. Hudson for point­
ing out the validity of the theorem in this case.) Given a polynomial 
F(t) = X/^o ail\ construct the knot as in Theorem 1, adding the 
second handle by the element aao/3aai • • • fiaam^~m instead of a?$oCl(5~l. 
This yields a slice knot such that 

7Ti(5w+2 — Sn) = (a , fi | aa°@aai • • • /3<xamt3~m). 

The Fox free derivative process yields Ai(t) = F(t), where a—»1 and 
|8—H as before. When « = 2, this provides a very simple proof of the 
results of Kinoshita [9], who constructed a smooth (not necessarily 
slice) sphere pair (S4, S2) corresponding to the given polynomial 
F(t). One could also compare the results of Terasaka (see [6, p. 136]), 
who constructed a smooth slice knot (54 , 52) corresponding to any 
factorizing polynomial. 

Suppose now that we are given a sequence of polynomials Fi(t), 
1 ^i, such that 

(a) for some integer p, Fi(t) is a unit (i.e. Fi(t) = ±ta) for i>p. 
(b) F«( l )«=±l . 
(c) Fi+i\Fi. 
(d) If X< = Fi-i/Fi, then Xi+1| Xi. 

Then we have the following generalization of the results of Levine 
[2]: 

THEOREM 3. For n^2y l ^ j ^ n / 2 , and given any sequence of poly­
nomials Fi satisfying (a)-(d), then there exists a smooth slice knot 
(5 n + 2 , Sn) with the Fi as its sequence of generalized Alexander poly­
nomials in dimension j . 
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PROOF. Reasoning as in [2], the problem reduces to finding a slice 
knot which has a diagonal matrix with entries X; presenting Hj(X). 
Theorem 2 tells us that we can find a slice knot for each nonunit A* 
since X*(l) = ± 1 , and we take the connected sum of all these knots 
to produce the desired one. 
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