HIGHER-DIMENSIONAL SLICE KNOTS

BY D. W. L. SUMNERS1

Communicated by E. Dyer, May 9, 1966

The purpose of this paper is to demonstrate the existence of higher-dimensional smooth slice (or 0-concordant) knots of spheres in spheres with generalized Alexander polynomials which are not symmetric and which do not factorize. In particular, this provides a negative answer to questions B and C of Hirsch and Neuwirth [1, Part II]. The method is then extended to provide a generalization of the results of Levine [2].

1. Algebraic theory. Consider an Abelian group A which is finitely generated as a module over the group ring JZ of the infinite cyclic group Z(t) (generated by t). An $m \times n$ matrix $M = (m_{ij}(t))$ whose entries are polynomials in t (integer coefficients) is said to present A as a module if there exists an exact sequence of JZ modules

$$F_2 \xrightarrow{d_2} F_1 \longrightarrow A \longrightarrow 0$$

where F_1 and F_2 are free JZ modules on (x_1, \dots, x_n) and (r_1, \dots, r_m) respectively, and $d_2(r_i) = \sum_{j=1}^n m_{ij}(t)x_j$. See [3].

2. Generalized Alexander polynomials. A smooth n-knot is a smooth sphere pair (S^{n+2}, S^n) . If $\pi_1(S^{n+2}-S^n)=G$, and G'=commutator subgroup of G, then the universal Abelian covering space \tilde{X} of the knot complement $S^{n+2}-S^n$ is the regular covering space corresponding to G'. That is, $\pi_1(\tilde{X}) = G'$, and the group of covering translations is the Abelian Group G/G'=Z(t). The chain groups of \bar{X} , and hence the homology groups $H_i(\tilde{X})$ are finitely generated as modules over JG/G' = JZ(t), and have presentation matrices M_i , for all j (See [1]). In the terminology of [3], if $\epsilon_{1(j)}$ is the 1st elementary ideal of M_j and $\epsilon_{1(j)}$ is a principal ideal, then define the jth dimensional Alexander polynomial $\Delta_i(t)$ = generator of $\epsilon_{1(i)}$. If M_i is square, then $\Delta_j(t) = |M_j|$, the determinant of M_j . When j = 1, the polynomial is the usual Alexander polynomial [4, p. 353]. Also, one can easily define a whole sequence of generalized Alexander polynomials in dimension j, each one corresponding to a higher elementary ideal of the presentation matrix M_j (See [2].).

¹ Supported by a Marshall Scholarship.

3. **The theorems.** In the following, a smooth slice knot is a smooth sphere pair (S^{n+2}, S^n) which bounds a smooth ball pair (B^{n+3}, B^{n+1}) .

THEOREM 1. If $n \ge 2$, and $|\le j \le n/2$, there exist smooth slice knots (S^{n+2}, S^n) with ith dimensional Alexander Polynomials $\Delta_i(t)$, $1 \le i \le j$, such that:

- (i) $\Delta_i(t) = 1$ $1 \leq i < j$.
- (ii) $\Delta_j(t)$ is not symmetric $(\Delta_j(t) \neq \pm t^{\alpha} \Delta_j(1/t), any \alpha)$.
- (iii) $\Delta_j(t)$ does not factorize (there exists no polynomial F(t) such that $\Delta_j(t) = \pm t^{\beta} F(t) F(1/t)$, some β).

Proof. The proof is based on the construction in [5] which gives knotted ball pairs in unknotted sphere pairs. The slice knots we are interested in will in all cases be the boundary of a constructed ball pair. In many cases the ball pairs will be precisely those obtained in [5], and the method of construction is exactly the same, but without the worry of embedding the ball pair in an unknotted sphere pair. The method may be described as follows: take an unknotted ball pair (B^{n+3}, B^{n+1}) , and add a solid j-handle to $B^{n+3}-B^{n+1}$ by a trivial S^{j-1} embedded in $S^{n+2} - S^n = \partial (B^{n+3} - B^{n+1})$. Then if $K = (B^{n+3} - B^{n+1})$ $\bigcup h^i$, $K \simeq S^i \bigvee S^i$ (\simeq denotes homotopy equivalence) and $\partial K \simeq S^i \bigvee S^i$ $\bigvee S^{n+2-i}$. For i>1 let $\alpha \in \pi_i(\partial K)$ represent the homotopy class of the inclusion map of S^i in $S^1 \bigvee S^i \bigvee S^{n+2-i}$, and t represent the action of the generator of $\pi_1(\partial K)$ on $\pi_j(\partial K)$. When j=1, let α represent the path around the handle h^1 and β the path around the S^n . One adds a handle h^{j+1} whose attaching sphere S^{j} represents the element $2\alpha - t\alpha$ in $\pi_j(\partial K)(j>1)$, or the element $\alpha^2\beta\alpha^{-1}\beta^{-1}$ in the case j=1. This yields a knotted ball pair with boundary a knotted slice sphere pair.

The proof falls into two cases:

Case 1: j=1. The construction gives a smooth slice knot (S^{n+2}, S^n) such that $\pi_1(S^{n+2}-S^n)=(\alpha, \beta \mid \alpha^2\beta\alpha^{-1}\beta^{-1})$. The Fox free derivative process [6] gives us $\Delta_1(t)=2-t$, when Abelianization sends α to 1 and β to t. This means that a result of Fox and Milnor [7] fails to generalize to higher dimensions, and gives us smooth slice knots which are not invertible and not +-amphicheiral (in the sense of [6]). Also, it proves that Neuwirth's group of knot groups [8, Chapter 8], is nontrivial for $n \ge 2$.

Case 2: j>1. The construction can again be used to produce a smooth slice knot (S^{n+2}, S^n) such that $\pi_1(S^{n+2} - S^n) = Z(t)$, $\pi_i(S^{n+2} - S^n) = 0$, 1 < i < j, and $\pi_j(S^{n+2} - S^n) = (t^i \alpha | 2\alpha - t\alpha)$. This means that $\pi_1(\tilde{X}) = G' = 0$, and the Hurewicz Isomorphism Theorem implies $H_j(\tilde{X}) = \pi_j(\tilde{X}) = \pi_j(S^{n+2} - S^n)$. The matrix presenting $H_j(\tilde{X})$ as a

module over JG/G' = JZ(t) is the 1×1 matrix (2-t), so $\Delta_j(t) = 2-t$. When j = n/2(n even) this answers questions B and C of Hirsch and Neuwirth [1] in the negative.

In fact, the construction allows us to prove the following:

THEOREM 2. For $n \ge 2$, $1 \le j \le n/2$, and given any polynomial F(t) such that $F(1) = \pm 1$, then there exists a smooth slice knot (S^{n+2}, S^n) with Alexander polynomials $\Delta_i(t)$, $1 \le i \le j$, such that $\Delta_j(t) = F(t)$.

PROOF. The construction and reasoning is exactly the same as in Theorem 1, with the polynomial F(t) becoming a relation in the appropriate homotopy group.

Case 1: j > 1. Construct the knot as in Theorem 1, but attach h^{j+1} by the element $F(t)\alpha$ instead of $2\alpha - t\alpha$. This yields a slice knot such that $\pi_1(S^{n+2} - S^n) = Z(t)$, $\pi_i(S^{n+2} - S^n) = 0$, 1 < i < j, and $\pi_j(S^{n+2} - S^n) = (t^i\alpha \mid F(t)\alpha)$. Clearly $\Delta_j(t) = F(t)$.

Case 2: j=1. (I would like to thank Dr. J. F. P. Hudson for pointing out the validity of the theorem in this case.) Given a polynomial $F(t) = \sum_{i=0}^{m} a_i t^i$, construct the knot as in Theorem 1, adding the second handle by the element $\alpha^{a_0}\beta\alpha^{a_1}\cdots\beta^{a_m}\beta^{-m}$ instead of $\alpha^2\beta\alpha^{-1}\beta^{-1}$. This yields a slice knot such that

$$\pi_1(S^{n+2}-S^n) = (\alpha, \beta \mid \alpha^{a_0}\beta\alpha^{a_1}\cdots\beta\alpha^{a_m}\beta^{-m}).$$

The Fox free derivative process yields $\Delta_1(t) = F(t)$, where $\alpha \rightarrow 1$ and $\beta \rightarrow t$ as before. When n = 2, this provides a very simple proof of the results of Kinoshita [9], who constructed a smooth (not necessarily slice) sphere pair (S^4, S^2) corresponding to the given polynomial F(t). One could also compare the results of Terasaka (see [6, p. 136]), who constructed a smooth slice knot (S^4, S^2) corresponding to any factorizing polynomial.

Suppose now that we are given a sequence of polynomials $F_i(t)$, $1 \le i$, such that

- (a) for some integer p, $F_i(t)$ is a unit (i.e. $F_i(t) = \pm t^{\alpha}$) for i > p.
- (b) $F_i(1) = \pm 1$.
- (c) $F_{i+1} \mid F_i$.
- (d) If $\lambda_i = F_{i-1}/F_i$, then $\lambda_{i+1}|\lambda_i$.

Then we have the following generalization of the results of Levine [2]:

THEOREM 3. For $n \ge 2$, $1 \le j \le n/2$, and given any sequence of polynomials F_i satisfying (a)-(d), then there exists a smooth slice knot (S^{n+2}, S^n) with the F_i as its sequence of generalized Alexander polynomials in dimension j.

PROOF. Reasoning as in [2], the problem reduces to finding a slice knot which has a diagonal matrix with entries λ_i presenting $H_i(\tilde{X})$. Theorem 2 tells us that we can find a slice knot for each nonunit λ_i since $\lambda_i(1) = \pm 1$, and we take the connected sum of all these knots to produce the desired one.

REFERENCES

- 1. M. W. Hirsch and L. P. Neuwirth, On piecewise-regular n-knots, Ann. of Math. 80 (1964), 594-612.
 - 2. J. Levine, A characterization of knot polynomials, Topology 4 (1965), 135-141.
- 3. R. H. Crowell, The annihilator of a knot module, Proc. Amer. Math. Soc. 15 (1964), 696-700.
 - **4.** ———, The group G'/G'' of a knot group G, Duke Math. J. **30** (1963), 349–354.
- 5. J. F. P. Hudson and D. W. L. Sumners, Knotted ball pairs in unknotted sphere pairs, J. London Math. Soc. 41 (1966), (to appear.)
- 6. R. H. Fox, "A quick trip through knot theory," Topology of 3-manifolds and related topics, Prentice-Hall, Englewood Cliffs, New Jersey, 1961, pp. 120-167.
- 7. R. H. Fox and J. W. Milnor, Singularities of 2-spheres in 4-space and equivalence of knots, Bull, Amer. Math. Soc. 63 (1957), 406.
- 8. L. P. Neuwirth, Knot groups, Ann. of Math. Studies No. 56, Princeton University, Princeton, N. J., 1965.
- 9. S. Kinoshita, On the Alexander polynomials of 2-spheres in a 4-sphere, Ann. of Math. 74 (1961), 518-531.

PEMBROKE COLLEGE

CAMBRIDGE, ENGLAND