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Malliavin's disproof of spectral synthesis breaks into two main 
parts: the first uses a certain "operational calculus," while the second 
involves a construction. Here we will be concerned only with the 
second part. The required construction is complicated, and several 
versions of it have been given [2], [3], [5]. In this note we describe 
an approach which appears to be somewhat simpler. 

I t should be mentioned that Varopoulos [6], [7] has recently given 
a completely different disproof of spectral synthesis, using tensor 
products of Banach algebras. However Malliavin's original counter­
example, although difficult to construct, gives a very powerful result: 
for instance it shows that spectral synthesis fails even for principal 
ideals. 

(Malliavin's results imply the existence of an fÇzA(T) such that 
ƒ> /2» P> ' * ' all generate different closed ideals in A(T). The hypoth­
esis of spectral synthesis asserts that any two closed ideals in A (T) 
having the same "zero set" coincide—see below for definitions.) 

DEFINITIONS. G is an infinite discrete abelian group; T is its dual, 
which is compact and not discrete. For / G L ^ G ) the Fourier trans­
form ƒ is defined by f(y) = £ 0 ƒ(£)(-ƒ>, y)dp. For fGL^T) we set 
J{p)==Jvf{y){py y)dy, so that the Fourier inversion theorem holds: 
ƒ" " ==ƒ. A(T) denotes the algebra of Fourier t ransforms/(T), ƒÇzLl(G). 
I t is endowed with the norm, ||/| | s= ]C | / ( £ ) | * s o that A(T) is just 
an isomorphic and isometric copy of Ll(G). The zero set of an ideal 
IÇ1A(T) is the set of points Yo£T such that/(7o) = 0 for all ƒ £ / . For 
gÇ:A ( r ) , rj(g) denotes the L00 norm of the sequence | : rj(g) = sup | g(p) \, 
PEG. 

Malliavin showed (cf. [3], [4], [5]) that spectral synthesis fails in 
Ll{G) provided there exists a real valued function ƒ (EzA(T) such that, 
for —- 00 <u< 00 

(A) rj(eiu0 = 0(\u \~n), all w ^ O . 

THEOREM. There exists a real valued function j'£A ( r) which satis­
fies (A). 

PROOF. T O simplify the discussion, we will assume that G is the 
group of integers ( r is the circle group). The modifications needed 
for dealing with the general case are similar to those in Rudin [5, 

1 This work was partially supported by N.S.F. Grant GP4033. 
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pp. 177-181]. Actually (A) can be improved upon; in fact, for any 
s > l , there exists a real valued function ƒ £ 4 (r) such that 

(B) v(e
iu') = 0 [exp( -ô | u \11*)] (8 > 0). 

This function has the form 

(1) ƒ(?) = Z ( l / * 0 o» M, 

where p\<pi< • • • is a "very rapidly" increasing sequence of inte­
gers. For the sake of definiteness, let us take 5 = 2. 

The proof of (B) is based on certain properties of the norm rj. 
These are given in (a), (b), (c), Lemma 1 and Lemma 2. 

REMARKS. Although rj is obviously a norm in the linear sense, it is 
not multiplicative (cf. Lemma 1). Proposition (c) depends on the 
fact that G is the group of integers, and Lemmas 1 and 2 would have 
to be modified slightly for the case of an arbitrary G. The proofs of 
(a)-(c) are trivial. 

(a) If hÇzA(T), \h\ = 4 , then 7j(h) < 1 unless the Fourier series ex­
pansion of h(y) contains exactly one term. 

(b) y\ is continuous in terms of the topology on A(T) (since rj( ) 

sll ID-
(c) For all integers fe^O, rç[g(feY)] is independent of k(gÇzA(T)). 

LEMMA 1. Let ga and ha be nonzero elements of A{T) which depend 
continuously on a real parameter a. Then for any M>0 and any €>0 , 
there exists a positive integer k such that 

(2) v[gaM-ha(ky)] < (1 + €) -*(g«) •*(*«) for all « £ [ - ! , M]. 

SKETCH OF PROOF. The idea is that, if k becomes very large, the non­
zero Fourier coefficients of h(ky) will be very far apart. But by defini­
tion of ^4(r), the Fourier series for ga(y) is absolutely convergent. 
Moreover, since ga varies continuously in ^4(r), the convergence 
can be shown to be uniform in a, « G [ ~ M , M]. Then (2) follows 
from the standard convolution formula for the Fourier coefficients 
of a product. 

LEMMA 2. For any interval [a, b] not containing 0, there exists a con­
stant p < 1 such that rj [exp(ia cos ky) ] ̂ pfor all k ^ 0 and all a G [a, b]. 

PROOF. Simply apply (a), (b), and (c) (a continuous function on 
a compact set assumes a maximum value). 

Now to prove (B). Since f(y) = XXiCV^ 2 ) cos pky, it follows that 
exp(iuf(y)) = n ? - i W T , U) where 

(3) bk(y, u) s exp[(iu/k2) cos pky\. 
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Define cn(y)^ II*=i ^ ( 7 ) . Choose {ek}, ek>0, so that H ( l + ek) < 2 . 
Then from Lemma l,for a suitable choice of {pn} (defined by induc­
tion of course) 

(4) v(cn+i) < (1 + en)v(cn)rj(bn+i) f or | « | ^ n2. 

(Note that the range of admissible values of u increases with each n.) 
Thus, since t\ is continuous on A ( r ) 

(5) V ( Û h) < 2rj(cn) I I V(h) for I « I S n\ 
\ fc-1 / k>n 

Now break the interval [l , 00) and the sequence {l , 2, • • • } into 
sections 4 n ~ 1 ^ | w | g4 w , 2n<kS2n+1. By Lemma 2 there exists a 
p < l such that for any u, k with 1 /16^ \u/k2\ ^ 1 , rç(&fe) ̂ p (cf. (3)). 
Hence (5) implies 

(BO u(n**)=o[p'«il/2] (P<I) . 

PROOF. Consider | w| in the interval 471""1 ^ | u\ ^ 4 n ; now replace w 
by 2n in (5), and look only at the termsrj(jbk) with 2n<k^2n+1 0?(W> 
??(£*) Û1 for all i, because | bi\ s | c,-| = 1). 

Finally, since U>»i bk = exp(iuf), (B') is equivalent to (B) (with 
5 = 2) . 

Added in proof. The author has recently learned of another simpli­
fied proof of "non spectral synthesis" due to Kahane and Katznelson 
(Israel J. (1963) ; see also Stanford Univ. Seminar Notes by Katznel­
son, 1965). Their construction requires a little more analytic prepa­
ration than that given here; but it also proves more—e.g. that the 
f unction ƒ described above can be chosen to be Holder continuous. 
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