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Malliavin’s disproof of spectral synthesis breaks into two main
parts: the first uses a certain “operational calculus,” while the second
involves a construction. Here we will be concerned only with the
second part. The required construction is complicated, and several
versions of it have been given [2], [3], [5]. In this note we describe
an approach which appears to be somewhat simpler.

It should be mentioned that Varopoulos [6], [7] has recently given
a completely different disproof of spectral synthesis, using tensor
products of Banach algebras. However Malliavin’s original counter-
example, although difficult to construct, gives a very powerful result:
for instance it shows that spectral synthesis fails even for principal
ideals.

(Malliavin’s results imply the existence of an f&EA(T') such that
fy f4 3 « - - all generate different closed ideals in 4 (I"). The hypoth-
esis of spectral synthesis asserts that any two closed ideals in 4 (T")
having the same “zero set” coincide—see below for definitions.)

DEFINITIONS. G is an infinite discrete abelian group; I is its dual,
which is compact and not discrete. For fEL'(G) the Fourier trans-
form f is defined by 7(v) = 2. ¢ f(»)(—p, v)dp. For FELNT) we set
1) =Stf(v) (P, ¥)dy, so that the Fourier inversion theorem holds:
f~ 7 =f. A(T") denotes the algebra of Fourier transforms 7(v), fEL(G).
It is endowed with the norm, ||f||= X |f(»)|, so that A(T) is just
an isomorphic and isometric copy of L!(G). The zero set of an ideal
IC A(T) is the set of points v, &I such that f(y,) =0 for all fEI. For
gEA(T), n(g) denotes the L* norm of the sequence 2:7(g) =sup| 2(p)|,
pEG.

Malliavin showed (cf. [3], [4], [5]) that spectral synthesis fails in
LY(G) provided there exists a real valued function fEA (T') such that,
for —o <u<

(A) n(e™) = 0(| u|-"), allm = 0.

THEOREM. There exists a real valued function fEA(T') which satis-

fies (A).

Proor. To simplify the discussion, we will assume that G is the
group of integers (T is the circle group). The modifications needed
for dealing with the general case are similar to those in Rudin [5,
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pp. 177-181]. Actually (A) can be improved upon; in fact, for any
s>1, there exists a real valued function fEA(T') such that

(B) n(e™) = Olexp(—s|u|U9)] (5> 0).

This function has the form
1) @) = 22 (1/k*) cos prv,
k=1

where p;<p:< -+ - is a “very rapidly” increasing sequence of inte-
gers. For the sake of definiteness, let us take s=2.

The proof of (B) is based on certain properties of the norm 1.
These are given in (a), (b), (c), Lemma 1 and Lemma 2.

REMARKS. Although 7 is obviously a norm in the linear sense, it is
not multiplicative (cf. Lemma 1). Proposition (c) depends on the
fact that G is the group of integers, and Lemmas 1 and 2 would have
to be modified slightly for the case of an arbitrary G. The proofs of
(a)—(c) are trivial.

(@) If heA), [h[ =1, then 5(%) <1 unless the Fourier series ex-
pansion of k(y) contains exactly one term.

|(|bh 7 is continuous in terms of the topology on A(T') (since n( )
=1l 1D-

(c) For all integers k50, n[g(ky)] is independent of k(gEA(T)).

LemMA 1. Let g, and h, be nonzero elements of A(T') which depend
continuously on a real parameter a. Then for any M >0 and any >0,
there exists a positive integer k such that

) nlgal) halkr)] < (1 + € -n(ga) -n(ha) for all « € [—M, M].

SKETCH OF PROOF. The idea is that, if £ becomes very large, the non-
zero Fourier coefficients of (ky) will be very far apart. But by defini-
tion of A(T'), the Fourier series for g.(y) is absolutely convergent.
Moreover, since g, varies continuously in A4 (I"), the convergence
can be shown to be uniform in «, a&[— M, M]. Then (2) follows
from the standard convolution formula for the Fourier coefficients
of a product.

LEMMA 2. For any interval [a, b] not containing 0, there exists a con-
stant p <1 such that n[exp(ia cos ky) | Zp for all k%0 and all «E [a, b].

Proor. Simply apply (a), (b), and (c) (a continuous function on
a compact set assumes a maximum value).

Now to prove (B). Since f(v) = D _;1(1/k2) cos pxy, it follows that
exp(iuf(y)) = [ 1en1 bx(y, ) where

(€) bi(v, u) = exp[(iu/k?) cos prv].
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Define ¢,(y) = J[2-1 bx(v). Choose {ek}, &>0, so that [J(1+4e) <2.
Then from Lemma 1, for a suitable choice of {p,.} (defined by induc-
tion of course)

C)) N(ent) < (1 + e)n(ca)n(bnys) for ‘ ul = n

(Note that the range of admissible values of % increases with each %.)
Thus, since 9 is continuous on A4 (T")

) 7 ( 11 b;,) < 2n(ca) II n(de) for ‘ u| < nt
k=1 k>n
Now break the interval [1, ) and the sequence {1, 2, } into

sections 4"'<|u| <4r, 2<k <27+l By Lemma 2 there exists a
p<1 such that for any %, & with 1/16 < | u/k?| =1, 9(be) <p (cf. (3)).
Hence (5) implies

®) o(Io)=obe™ 6 <.

k=1

Proor. Consider |#| in the interval 41 <|u| £4~; now replace
by 2% in (5), and look only at the terms 5(bs) with 27 <k <27+ (9(b;),
n(c:) =1 for all 7, because ]b,-] = ] ci] =1).

Finally, since J]i.. bx=exp(iuf), (B’) is equivalent to (B) (with
s=2).

Added in proof. The author has recently learned of another simpli-
fied proof of “non spectral synthesis” due to Kahane and Katznelson
(Israel J. (1963); see also Stanford Univ. Seminar Notes by Katznel-
son, 1965). Their construction requires a little more analytic prepa-
ration than that given here; but it also proves more—e.g. that the
function f described above can be chosen to be Hélder continuous.
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