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Twelve years ago, A. D. Wallace, who might well be called the 
founder of the theory of compact topological semigroups, in a talk 
entitled The structure of topological semigroups [29], addressed the 
Society in this same capacity for the purpose of stating that there 
was no such thing as a structure theorem. "There does not exist at 
this time," he said, "any corpus of information to which the title 
'structure of topological semigroups' is in any fashion applicable. 
Whether such a body of theorems will ever exist is a matter for the 
future . . . " He went on to say that, contrary to the implications 
of the title, he would not talk about a small number of large theorems, 
but rather about a large number of small ones, because that was all 
that the then infant theory had to offer. Today, it is possible to carry 
through with the implications of his title, and so, in honor of his 60th 
birthday this past August 21st, 1965, I am going to talk about a 
small number of large theorems. In fact, primarily I am going to 
talk about just a single theorem—a structure theorem—which K. H. 
Hofmann and I in our forthcoming book [lO] call the Second funda­
mental theorem of compact semigroups. (Some open questions will also 
be discussed, and with these, a few additional results stated.) 

But in 1953, the theory of topological semigroups was hardly three 
years old. To be sure, there was the forgotten paper of Eilenberg's 
[5] in 1937, and a paper of Iwasawa's (in Japanese) [18] in 1948, but 
it was not until 1950 that any concerted effort in the area began— 
more or less simultaneously from several directions: there was the 
short, but very useful note by Gleason [8] and papers by Peck [25], 
by Gelbaum, Kalish and Olmstead [7], and by Numakura [23] a 
year later. But it was with the publication of papers by Numakura 
[24], Wallace [27], [28] in 1952 and 1953, and the dissertation of 
Koch [19], 1953, that the theory really began to move. By 1956, the 
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main elements of the First Fundamental Theorem, which I shall de­
scribe presently, had been obtained. Due largely to Wallace himself 
[30] it is, except for a few frills that Hofmann and I have added, now 
well known to workers in the area. 

In the early years, there was a great deal of groping about for the 
right techniques, and the beautiful structure theory for compact 
groups offered tantalizing bait for many deceiving conjectures. With 
his numerous ingenious examples, Hunter, see e.g. [14], [16], [17] set 
about destroying many of these, and it soon became obvious that 
neither the techniques nor the results of group theory could be ex­
tended to the realm of compact semigroups. New ideas about how 
these objects were to be described and new techniques—techniques 
peculiar to the area—were needed for obtaining this description. A 
recognition of what the correct building blocks should be, and a 
thorough knowledge of these had to be found. These new techniques 
have now begun to make their appearance, and enough of the basic 
building blocks can now be described to give us some rather solid in­
formation—at least about certain categories of compact semigroups. 

However, let us begin now with some definitions so that we can be 
more explicit. 

A semigroup is a nonempty Hausdorff space with a (jointly) con­
tinuous and associative multiplication. The results we are to describe 
apply only to compact semigroups, and in fact it is for the most part 
with the category of compact connected semigroups with identity 
that we wish to pursue our study. 

Let S be a semigroup. An identity is an element 1 £ S such that 
1#=#1 = # for all x£»S. The group of units (or maximal subgroup) of 
S is the set H ( l ) = {x : xy = yx = 1 for some y £ S}. In a compact semi­
group, i?( l ) is a compact group and thus is a quite comfortably 
"known" object—at least from the point of view of one working in 
topological semigroups. If £2 = e £ S , then H(e) the group of units of 
eSe, is the maximal group of e. 

A left (right) ideal of 5 is a set IQS such that SI CI (resp., ISCI). 
An ideal is simultaneously a left and right ideal. Every compact 
semigroup has a unique minimal ideal M(S) and it is closed. If was 
recognized fairly early by Wallace [30 ] that M(S) satisfied the 
hypotheses of a completely simple semigroup, the algebraic structure 
of which had previously been worked out by Suschkewitsch and Rees 
(see [4]). The topological properties were then easy consequences. 
Wallace also observed that the Cech global cohomological properties 
of S were concentrated in any maximal group in M(S). Thus, it is 
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possible to describe M(S) in the following terms: 
DEFINITION 1. Let X be a topological space. Define two multiplica­

tions on X as follows: 
(a) X has left zero multiplication if xy=x for all x, y (EX. 
(b) X has right zero multiblication if xy = y for all x, yÇzX. 

Let X and F be compact spaces and G a compact group. Let 

a: YXX-+G 

be a continuous function. Denote a(y, #) = [y, #]. Define the Rees 
product of X, G, Y as the space XXGXY with multiplication de­
fined by 

(x, g, y)(x', g', y') = (#, g[y, x']g', y'). 

(Notice that if G and F are degenerate, this amounts to left zero 
multiplication on X. A similar statement applies to F.) This results 
in a continuous associative multiplication o n X X G X F which we de­
note by [-X", G, F]a . Any compact semigroup isomorphic to a Rees 
product of this form we call a paragroup. 

We can now state the 

FIRST FUNDAMENTAL THEOREM. Let S be a compact semigroup. Then 
there is a unique minimal ideal M(S) and it is a paragroup [X, G, Y\c. 
The sets XXGXy (resp., xXGXY) are the minimal left (resp. right) 
ideals of M(S) and hence of S. Moreover, there is a sequence of surjective 
morphisms 

S = Si —> 02 —* 03 —> 04 

such that fi\(Si\M(Si)) is a homeomorphism onto Si+i\M(Si+i), 
i = l , 2, 3, and 

(1) M(S2) is isomorphic to [X, e, Y] and for each (x, e, y)CzM(S2), 
frx(x, e, y) = (x, G, y), which is a maximal subgroup of M(S), 
where e is the identity of G. 

(2) M(Sz) is isomorphic to X with left zero multiplication, and 
f^(x) is a minimal right ideal of M(S). 

(3) M(SA) is a zero for S*. 
If, moreover, S is connected and has an identity, then the inclusion map 
i: (x, G, y)—>S induces an isomorphism i*: H*(S)—»iT*(G) of cohom-
ology groups (relative to any coefficient group). The sets X and Y are 
acyclic relative to Cech cohomology. (Relative to singular theory, this 
need not be so.) 
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Thus, we can feel just about as confident in our knowledge of the 
structure of the minimal ideal of a compact connected semigroup 
with identity as in the knowledge of its group of units. But these are 
only settled villages at either extreme of a huge forest. We want to 
gain some knowledge of the mysteries of the interior. A little reflec­
tion and a few examples will soon dispel any delusions about the 
possibilities of an adequate charting of this wilderness. However, 
there is a path through the wilderness joining the two ends. 

DEFINITION 2. Let T be a compact connected semigroup with 
identity 1. If T contains no proper compact connected subsemigroup 
meeting M(T) and containing 1, we call T irreducible. 

Zorn's lemma tells us 

LEMMA 1. Let S be a compact connected semigroup with identity 1. 
Then there is an irreducible semigroup TQS such that 1 £ T and 
M{S)C\T^0. 

Now we have planned a trail through the forest. Can we at least 
describe the trail? That is the essential content of the Second Funda­
mental Theorem and the results leading thereto. 

We proceed to describe these semigroups. But first, let us agree on 
when we have an adequate description. 

A preferred method of describing the structure of objects in many 
categories is to find isomorphic, or at least sufficiently many homo-
morphic, representations of the object into objects whose structure is 
rich enough to be more amenable to investigation than the original 
object. This is true, in particular, of the categories of connected com­
pact and locally compact groups, commutative Banach algebras, 
Boolean rings, and Lie algebras, and in fact in some sense to abelian 
categories via the Mitchell-Freyd full embedding theorem. But there 
can be no direct analogue to the representation theory for compact 
groups as semigroups of endomorphisms of topological vector spaces 
because of the existence of too many idempotents in most compact 
semigroups. Probably certain subcategories of semigroups can be 
treated successfully by means of sufficiently many linear or affine 
representations, however. 

Our approach is rather by constructive methods. The technique is 
to produce first a few basic building blocks—semigroups which are 
easily described via simple formulae. From these building blocks, we 
construct more complicated structures. We will thus consider the 
structure of the objects in a category as known if we have constructive 
rules which allow us to decompose the structure into the simplest 
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building blocks and then compose them again to obtain a topologi­
cal^ and algebraically isomorphic structure. We must, in this pro­
cess, allow a certain restrained use of homomorphic images—or sur-
rnorphism.1 To illustrate what is meant by this statement we shall 
consider an example. But first we need some definitions. 

DEFINITION 3. Let 5 be a compact semigroup. We shall let 0C denote 
the set of pairs (x, y) in 5 X 5 such that x and y generate the same 
principal left and principal right ideals. That is, x\JxS=yKJyS and 
x^JSx = y\JSy. 3C is a closed equivalence relation. Let y: S—>5/3C 
denote the natural projection.2 

EXAMPLE 1. Let 6 denote the category whose objects are compact 
semigroups such that 3C is a congruence relation and 5/5C is iso­
morphic on n = [ 0 , l ] relative to ordinary multiplication of real 
numbers, and whose morphisms </>: S—*S' are surjective morphisms 
which make the diagram 

S - • 5 ' 

n 

commute. If we succeed in describing one object 5 in this category, 
we shall consider all objects 5 ' in the category known for which there 
is a morphism <t>: S—*S' in the category. The limits imposed on the 
morphisms are sufficient to justify this approach. 

To further illustrate this approach and to build up our store of 
building blocks, letll r , O ^ r ^ l , denote the interval [r, l ] with multi­
plication given by x -y = max {xy, r}. (This is the semigroup obtained 
from II = n 0 by identifying the ideal [0, r] to a point.) It is not difficult 
to show that IIr is isomorphic to II1/2 for 0 > r > 1 and is characterized 
by the property that it is a totally ordered compact connected semi­
group with identity and zero as end points, and every element (ex­
cept the identity) is nilpotent. 

1 We use the word surmorphism to mean "morphism onto." One would expect 
the more euphoneous word "epimorphism" to be used in this context, but alas, an 
epimorphism in the category of compact semigroups, or even in the more restricted 
category of compact connected semigroups, need not be onto. 

2 The relation 3C and the equivalence relations «£, (R, 3D determined similarly by 
the principal left, respectively, right, respectively, two sided ideals play a role in the 
theory of compact semigroups similar to that played by the taking of quotient spaces 
in the theory of topological groups. Notice that3C—«CP\(R. 



606 P. S. MOSTERT [July 

A solenoidal semigroup is a compact semigroup with a dense one-
parameter subsemigroup (i.e. a dense homomorphic image of the 
multiplicative semigroup (0, 1)). A solenoidal semigroup is either a 
solenoidal group (i.e., a compact group with a dense one-parameter 
subgroup [9]), or an irreducible semigroup such that 5 /5C«n r for 
some O^gr<1. A further characterization, is as follows: let A be a 
solenoidal group a n d / : (0, l]—>A be a dense one-parameter subsemi­
group. Then 11X^4 is a compact semigroup relative to coordinatewise 
multiplication. Let S be the subsemigroup given by 

5 = {(x,f(x)):xE(0,l]}\J{0} XA. 

Then S is a compact semigroup. 
Now if 0 Sr < 1, the equivalence relation R which collapses the sets 

[0, r]X {a} to a point for each aÇEA is a congruence relation. Let 
Sr = S/R. Then 5 and Sr are solenoidal semigroups and any solenoidal 
semigroup is either a solenoidal group, or is obtained in this way. If 
A is the universal solenoidal group, that is the Baire compactification 
(Rd)* of the reals, then the resulting semigroups are denoted by 2 
and S r (relative to ƒ=2, where i: Rd—>R is the identity map). Every 
solenoidal semigroup S is a surmorphic image <j> : 2r—>S in such a way 
that 

Sr > S 

' \ / ' 
n r 

is a commutative diagram. 
We now have a t our disposal a number of important building 

blocks. One further form is required before we are ready to tear down 
and reconstruct irreducible semigroups. The basic building blocks 
of irreducible semigroups are the cylindrical semigroups. For the pur­
poses of treating irreducible semigroups, it is enough to consider 
cylindrical semigroups with connected abelian groups. But we wish to 
do a little more. Cylindrical semigroups are formed as follows: Let H 
be a compact group. A semigroup S is said to be cylindrical if it is a 
surmorphic image of a semigroup of the form 2 X i ? where H is a 
compact group. This is actually a great deal stronger statement than 
it may at first appear. We know, for example, that if 5 is not a group, 
S/3C is then isomorphic to either II or II1/2 and that 5 can in fact be 
obtained from S X f f or from XXH by factoring a totally ordered 
collection of closed, normal subgroups { J H V . X £ ( 0 , l ] ) of H and 
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HoCiRd)* XH such that 
(a) x<y implies HVC.HX, 
(b) Hx = n{Hv:x>y}, 
(c) 1XU{H. : 0 2 * ^ 1 } CHo, 

where in the second case we also specify that Hx = Hr if x ^r. In fact, 
we can again take the atti tude that a cylindrical semigroup is a 
sufficiently familiar object to use as a building block in our project. 

Now, according to our promise, we are ready to describe the recon­
struction of an irreducible semigroup. Having described so far only 
semigroups which are abelian—or are nearly so—we should perhaps 
at this point give out a part of the secret. 

THEOREM 1. An irreducible semigroup is abelian. 

The proof of this fact was a major step in the unveiling of the 
mysteries of irreducible semigroups. I ts proof, the skeleton of which 
utilizes a generalization of an argument of Koch's [20], is based on 
the following two important results, the first of which is due to 
Mostert and Shields [22]. (The main argument for the second was 
given to Hofmann and me by A. Borel and is a generalization of a 
result of Conner's [6], Our original proof was valid only for groups 
with the property that for some prime p, the collection of cyclic 
groups of order pn for n = 1, 2, • • • forms a dense subset of the given 
group.) 

THEOREM l a (MOSTERT-SHIELDS). Let S be a compact connected 
semigroup with identity Is and suppose there is a neighborhood of Is in 
which there is no other idempotent. If S5*H(1), then there is a morphism 
0 : 2 - > S such that 4>(lu) = ls and <j>{M(2)) <tH{\s). 

THEOREM l b . Let G be a compact connected abelian group acting as a 
transformation group on a compact acyclic space X. Then the fixed point 
set of G is acyclic. 

(A space is said to be acyclic if its Cech cohomology ring is iso­
morphic to that of a point.) 

The proof of Theorem 1 can now be outlined. Let us assume for 
the moment that S has a zero, or at least that all groups are trivial. 
This we may do because of the First Fundamental Theorem. We shall 
show that a compact connected semigroup 5 with identity contains 
a connected abelian semigroup containing the identity and meeting 
the minimal ideal. We may do this for 52 (or SÀ) and then lift back 
to S. Now let U be an entourage of the uniform structure of 5, and 
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let ©u be the collection of all compact abelian subsemigroups TCZS 
such that 1E7\ M(T) is connected, and T is U-connected. (That is, 
if x, yÇzT, there is a finite collection of points X—3^0» X\y * * * » •X'n """" y 

in T such that (x»_i, x») £U, i = 1, • • • , n.) Order <Bu by inclusion. It 
is not difficult to show that it is inductive. Let Tn be a maximal ele­
ment in Cu. We want to show that Tn(~^M(S)9£0. Suppose on the 
contrary that Tn does not meet M(S). The hypotheses on 7u imply, 
by the First Fundamental Theorem, that M (Tu) is an abelian group. 
Let e denote its idempotent. Then M (Tu) acts on the acyclic space 
eSe under s-^g"1sg and leaves e and the zero of 5 (or some point in the 
acyclic space M(eSe)) fixed. Since the fixed point set of M(Tu) is 
connected by Theorem lb, the centralizer Z of M(Tu) is connected, 
contains e, and meets M(S). If U(e)P\Z contains an idempotent ƒ 
different from e, then Tu^JfM(Tu) is a properly larger semigroup in 
Cs. If U(e)HZ contains no idempotent except e, then by Theorem la 
there is a morphism <j>\ 1i-^eSeC\Z such that <£(lu) s=se a n d <t>(MÇZ)) 
dZU(̂ ). Then Tu^JM(Tu)<l>(S) is again a properly larger semigroup in 
Cu. Thus, Tu does indeed meet M (S). Now a limit over all entourages 
of the uniform structure yields a compact connected abelian semi­
group T such that 1ET and TC\M{S)^0. (The full details of this 
will appear in [lO].) 

Once we are aware that irreducible semigroups are abelian, life 
becomes much easier. One can list a number of properties—such as 
(1) that the group of units is trivial, and (2) that 5/3C is a connected 
totally ordered semigroup with zero and identity as endpoints (i.e., 
an I-semigroup) and these semigroups are all long known through the 
work of Clifford [24] and Mostert and Shields [21 ]. These are prop­
erties of abelian irreducible semigroups proved by, in the first case, 
Hunter [16], and in the second case, Hunter and Rothman [17]. 
Moreover, examples by Hunter and Rothman [19] and by Hunter 
[14], [16] gave a great deal of insight into what one must look for 
in a structure theorem. Actually, the construction technique I shall 
describe below has much wider applications, and so I shall in this 
instance not merely limit myself to the abelian case. The semigroups 
constructed here occupy a valuable place in the theory of compact 
connected semigroups, as we shall see by Theorems 1 and 2 below. 
Since they are formed by the chaining of well known objects— 
namely the cylindrical semigroups—like ornaments along a chain 
of idempotents, Hofmann and I have for this reason given the semi­
group resulting from such a construction the name horrnos, from 
opfxosy meaning "ornamental chain." We now proceed with the con­
struction : 
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T H E HORMOS. The hormos is constructed from a collection 
(X, Sx, mXy), where 

(a) X is a totally ordered compact set. 
We shall denote the minimal element of X by 0. If a, bÇzX, ]a, b[ 
= {xÇzX: a<x<b}. Intervals [a, 6], [a, b[, etc. are similarly de­
fined. Define X'= {xÇzX: ]y, x[ = 0 for some y<x}. 

(b) Sx, for each x(E.X, is a cylindrical semigroup. 
Let Hx denote the group of units of Sx and Mx — M{Sx)> Let lx de­

note the identity of 5* and ex the identity of Mx- We require that 
x $ X ' , iff Hx = Sx = Mx. 

(c) For each pair x, yGX, xSy, ntxy: Sy—*SX is a homomorphism 
satisfying the following properties : 

(i) m%x is the identity on 5*. 
(ii) If x<y, then mxy(Sy) QHX. 
(iii) If x<y<z, then rnxVmyg = nix*-
(iv) mXy\My is an injection if x = y', yÇzX', where for yG-X7, 

y' = l .u .b .{z<y} . 
(v) The map <t>x: Hx->Tr{Hy:y<x} defined by <j>x{g) = (fnVx(g))y<x, 

for 0 < x (£ X ' , is an isomorphism onto the projective limit 
lim^jiîy, tnyz, y<z<x}. Let S' denote the disjoint union of the 
Sx, xÇzX, let piX'—ïX be defined by p(s)=x if sÇE.Sx, and define 
multiplication on 5 ' by 

s-t = 

's/ if s, / G *SW)> 

S"mP(8)p(t)(t) iip(s) < p(t), 

[mP(t)p(s)(s)-t if p(t) < p(s). 

For example, if the cylindrical semigroup SP(8) and SP(t) are in the 
relationship shown in Figure 1, multiplication represents a rotation of 
5 in its Jî-class by the image of t under the map mP(8)P(«). (It is not 
difficult to show that the ü-class of an element 5 is just s-HP(8).) 

Now on S' we define a basis for a topology as follows: Let S3 be a 
basis of open intervals on X, and let $8X be the set of open sets in 
Sx\Hx, xÇzX. For Ï7G93, let w = g.l.b. U, and let F be open in Su with 
Hur\V^0. Define 

W(U, V) = p-\U) C\ {s: mupi8)(s) G V}. 

T h e n U j S * : xEX}\j{W(U, V): 17G93, 7 open in Sw} is a basis f or 
a compact Hausdorff topology in S'. 

We are not quite finished. We want a semigroup 5 such that 5/5C 
is an /-semigroup—that is, with S/3C a connected totally ordered space. 
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S^s) Sp(t> 

J N. ^*£- J 

RS)p(l) 

o o 

« « pit) 
FIGURE 1 

At present, S'/3C is ordered, but is not connected unless X is con­
nected. We define an equivalence relation R on Sf by R(s) — {s} if 
p(s) (£X' or p{s)^xf for any # £ X ' , and i?(s') = {^«(5) , s\ if s' =5 
or s' — m,X'x(s) for some s with £(5) = x £ X ' . i£ is in fact a closed con­
gruence relation. Define 5 = Horm(X, Sx, mxy)=S'/R. This semi­
group is a compact semigroup and 5/3C is an /-semigroup. (An I-
semigroup is a hormos also—but a quite trivial one. In this case, for 
each x £ X , Sx =11, for some r rg l depending on x.) We are able to 
prove 

THEOREM 2. Let S be a compact semigroup. Then S = Horm(X, Sx, mxy) 
for some collection (X, Sx, mxy) satisfying the conditions (a)-(c) iff 
5/3C is an I-semigroup. 

In the case of irreducible semigroups, we are going to be able to 
say much more, but first let us illustrate this rather formidable sound­
ing construction with a few simple examples. 

Let X— { — 1, 0, 1} with the natural order. Let S\ be the cylindrical 
semigroup given previously—i.e. a one-parameter semigroup winding 
down on the circle group. Let So be the unit disk in the complex plane 
under ordinary multiplication of complex numbers, and let S_i = 0, 
a one point semigroup. The map Woi*. Si —» So is given by 
w0i(r, exp[27rix]) =exp[27rix], w_io = 0, and mxx the identity. We 
illustrate this in Figure 2. 
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The interval a t the right represents 5/3C. There are the 3 idem-
potents 1,0, —1 (relative to multiplication xy = min(x, y)) and be­
tween the idempotents, multiplication is isomorphic to multiplica­
tion on the ordinary unit interval. The semigroup S so constructed 
is, in this case, also irreducible. 

S' 

«•-it H(1)=*1 

^C5,) 

S/% 

9 1 

-/ 
FIGURE 2 

Let us illustrate the construction now with a more complicated, 
and correspondingly more interesting example. If we take the prod­
uct of the semigroup used for Si in the previous example and the 
circle group T, and then collapse each set (0, a) X T to a point, we 
obtain the semigroup illustrated in Figure 3. 

Let J*f={l/2W, l - l / 2 w : w = 0 ,1 , • • • } , 5 0 = 5 i = | 0 } , a one point 
semigroup, and let Sx be isomorphic to the semigroup given above in 
Figure 3 for x^o, 1. The maps xxy, x<y and ]x, y[ = 0 are obtained 
via isomorphisms of the minimal ideal (which is a circle group) to the 
group of units (again a circle group) of Sx, for x, y?*0y 1. If x = 0 or 
if ] #> y {y6 0i then mxy = 0, if y = 1, mxy(0) = lx. Then Horm(X, Sx, mxy) 
= S may be described geometrically by Figure 4. 

Again we have an irreducible semigroup. (This example was 
discovered by Hunter and Rothman [17] to illustrate that, though 
the Cech groups of a compact semigroup with zero are trivial, the 
singular groups need not be. Similar examples were given by them 
and by Hunter [14] to show, among other things, that in the presence 
of sufficiently many idempotents, one could not hope always to find 
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non trivial one-parameter or /-semigroups going to the identity of S.) 
To see that not all hormoi are irreducible, simply take the product 
of this semigroup with a compact group. 

We can now describe the structure of irreducible semigroups as 
follows: 

THEOREM 3. A semigroup S is an irreducible semigroup if and only 
if it is isomorphic to a hormos Horm(X, Sx, mxy) whose group of units is 
trivial j and 

Hx = (U{tnxy(Sy):x<y})* 

for each x £ X , x < m a x l . Moreover, in an irreducible semigroup, all 
maximal subgroups are connected. 

Interestingly enough, it is possible to obtain a universal irreducible 
semigroup relative to a given totally ordered set X. This semigroup is 
denoted by Irr(X). Thus, if S is an irreducible semigroup, and 
E denotes the set of idempotents of 5, then E is totally ordered 
relative to the order e ^ ƒ if e = ef, and there is a surmorphism 
$: Irr(£)/3C—»5/3C such that the following diagram commutes 

lrr(£) 1- *. S 

I \s~\ 

1 /\r 
Irr(£)/3C > S/3C 

where i, j and i, j are all injections. 
We can not quite say that <?> is an isomorphism, since between two 

idempotents, there may occur a morphism equivalent to the mor-
phism p(x) =max(x, 1/2). 

The Second Fundamental Theorem now takes the following form, 
where 3D is the equivalence relation on S defined by (x, y) G 33 iff I(x) 
~I{y) for x, y^M(S), or x, y G M(S)y where I(x) is the principal 
ideal generated by x. 

SECOND FUNDAMENTAL THEOREM. Let S be a compact semigroup. 
Then the following are equivalent : 

(1) The connected component of each idempotent meets the minimal 
ideal. 
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(2) If e2 = e($:M(S), then H(e) is not open in eSe. 
(3) If e2 = e^M(S), then £>(e) is not open in SeS. 
(4) If e2~e> then there is a compact connected abelian semigroup in 

eSe containing e and meeting the minimal ideal of S. 
(5) If e2 = e, there is an irreducible hormos T in eSe such that 

TC\H(e)=e and TC\M(S)^0. 

And so with this theorem, we have our path through the wilderness, 
and with the previous theorem, we can feel we know ever y step of the 
way. 

FIGURE 3 

Actually, we can say a bit more. We can find T of (5) in the 
centralizer of any given connected abelian subgroup of H(e). How­
ever, it is an unsolved problem to determine if and when T can be 
found in the centralizer of H(e) itself. We give next some interesting 
special cases where this can be done. 

THEOREM 4. Let S be a compact semigroup with identity and let G 
be a compact subgroup of the group of units. Suppose that the space 
S/G of left cosets Gs is a totally ordered connected space, and let TT: S 
—>S/G be the quotient map. Then 

(a) sG — Gs for all s^S\M(S) and ir is a homomorphism of semi­
groups ; 

(b) there is an I-semigroup T containing 1, meeting M(S) and con­
tained in the centralizer of G, and TT\T: T—+S/G is a monomorphism. 

(c) If x $ M(S), then D (*) = Gx 
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Further information can easily be obtained in this situation and is 
given in Hofmann's and my book. Applications to semigroups with 
(n — 1) -dimensional group of units embedded in ^-manifolds can be 
made and the results of Mostert and Shields [21 ] obtained, for 
example. Results by Hunter [15] and Anderson and Hunter [ l ] on 
one (and two)-dimensional semigroups yield with relative ease from 
these techniques also. 
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FIGURE 4 

Another special case of the centralizing problem is contained in 
the following result, whose deceivingly simple statement hides for­
midable consequences—and a correspondingly formidable proof. 
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THEOREM 5. Let S be a compact connected semigroup with identity 
and no other idempotents outside the minimal ideal. Suppose S/Q is a 
totally ordered space. Then there is a solenoidal semigroup TQS such 
that 

(a) T is contained in the centralizer of H (I) ; 
(b) \<E.T andTC\M(S)^0. 

This theorem, actually used in the proof of Theorem 4 also, can 
then be applied to obtain 

THEOREM 6. Let S be a compact semigroup such that 3) is a congru­
ence relation and S/ 3D is an I-semigroup. Suppose that f or each idem-
potent eÇ£M(S), the set of idempotents in 3}(e) is a finite dimensional 
space. Then there is an idempotent in the maximal S)-class andy for each 
such idempotent ƒ, there is an irreducible semigroup T with ƒ as identity 
such that TC\M{S)9£0 and T is in the centralizer of every maximal 
group H(e) of S with e2 = e G T . If S is a union of groups, T is an I-
semigroup and is unique with respect to the given properties. 

The last statement in the theorem is of some interest in another 
setting. Let X be a compact connected topological space and T a 
totally ordered connected space (say the unit interval). Suppose there 
is a presentation of X as product spaces X t X F t = X, Xt, Yt<ZX, 
t&T such that 

(i) Xo = p=Yx, 
(ii) if t<s, then XtCX8, Y8CYt, 

(ni) xt=ns>tx8=(v8<tx8)*, 
(iv) Yt = (\J8>tY8)* = ns<tY8. 

The finding of an example of a connected compact idempotent semi­
group such that 5/3) is totally ordered, but S does not contain unique 
/-semigroups beginning at each idempotent depends on the finding 
of an example of such a space. We have shown in our book that for 
finite dimensional spaces, such a presentation is impossible. John 
Stallings has supplied us with an example of an infinite dimensional 
space having such a presentation—namely the space of continuous 
functions/: [0, l]—>[0, l ] with jf(0)=0 and satisfying the Lipschitz 
condition \f(x)—f(y)\ û\x—y\. 

The question then remains open as to whether or not there is an 
irreducible semigroup in the centralizer of H(l) if the set of idem­
potents in 3)(e) is infinite dimensional. The answer, because of Theo­
rem 5, depends entirely on the case when S/ 3D is an idempotent 
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semigroup. The question of what happens when £> is not a congruence 
but S/2D is totally ordered also is open. (Some of the results and ques­
tions mentioned above were announced without proofs by Hofmann 
and me [12].) 

One of the most important and useful concepts that has been of use 
in the theory is the notion of boundary, or peripheral points. In all 
examples that we know, the group of units lies on a sort of bounding 
set, an adequate definition of which still awaits discovery. A number 
of notions have been used to describe this situation, but each one 
seems suited only to special classes of semigroups. In our book Hof­
mann and I use several of these, although for the main results, we 
found the following the most useful : 

A point p in a compact topological space X is said to be arc-
peripheral if for any neighborhood U of p, there is a neighborhood V 
of p, V*CU, such that if z: C->V\{p} is a map homotopic in V to 
a constant map, z is homotopic in U\\p} to a constant map. If the 
homotopy is allowed to be taken over any compact connected space 
rather than an arc, we say p is ^-peripheral, where 6 represents the 
category of compact connected spaces. 

THEOREM 7. Let S be a compact connected semigroup with identity 
which is not a group. Then the group of units is ^-peripheral. If there 
is an arc containing points of the group of units but not contained en­
tirely in the group of units, then the group of units is arc-peripheral. 

The fact that the group of units is arc-peripheral in the circum­
stances of Theorem 4 was important to the proof of the result. A 
related result, and one of great importance in the proof of Theorem 4 
is the following fact we were forced to prove about groups: 

THEOREM 8. Let G be a compact group. Let <j>\ G—+H be an epimor-
phism, where H is a Lie group, and let Bbea closed subgroup of H. Then 
the natural projection G—^G/cj>~1(B) is homotopic to a constant map if 
and only if B—H. 

I t would be valuable to know that this result remains true when 
the homotopy is taken over an arbitrary connected space instead of 
an arc. 

Let us return now to the concept of peripherality. A good notion of 
peripherality should minimize the set of peripheral points, but in 
such a way as to retain Theorem 7. I t would be desirable to find a no­
tion which would do this and also imply that every compact connected 
semigroup of finite dimension has a point which is not peripheral. 
This would imply the following theorem, due to A. L. Hudson and 
myself [13]: 
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THEOREM 9 (HUDSON-MOSTERT) . A compact connected finite di­
mensional homogeneous semigroup with identity is a group. 

My discussion has been perhaps unduly barren of examples. How­
ever, the theory suffers no shortage there. The many fine examples of 
Hunter and his coworkers have been particularly helpful. Hofmann 
and I devote a full chapter to examples in our book. Some of them, 
described for the first time there, were quite valuable to us in our 
attempts to find the right directions and limits of the theory. 

The problems I have mentioned in the above illustrate some of the 
many interesting and seemingly difficult problems that remain in the 
theory as we have developed it in our book. Actually, I sometimes 
feel that the theory may suffer, not from the lack of problems, but 
from the great plethora of problems that can be asked. Part of the 
exercise is to find the right ones, perhaps. I tend to feel that, except 
for the problems mentioned—which are all apparently quite difficult 
—the study of compact connected semigroups as a category has 
about reached the point of diminishing returns. More restrictive sub­
categories most likely will present the more interesting questions and 
satisfying answers. Particular examples would be compact connected 
abelian semigroups, measure semigroups (for example, the so called 
Taylor Semigroup [10; D-20]), semigroups of endomorphisms of En, 
and semigroups of differentiable or analytic transformations of mani­
folds. There are very interesting questions in the area of noncompact 
semigroups, and in semigroups where multiplication is separately, 
but not jointly, continuous. 
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