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1. Introduction. In [5] Kaniel proved a fixed point theorem for a 
nonlinear quasi-compact operator in a Banach space. The purpose of 
this paper is to generalize and simplify Kaniel's main result and its 
proof to a more general class of nonlinear operators which we call 
projectionally-compact (P-compact) and which, among others, con­
tains completely continuous, quasi-compact, and monotone operators. 
From our general fixed point theorem for P-compact operators we 
then deduce in a simple way the fixed point theorems of Schauder 
[ i l ] , Rothe [lO], Krasnoselsky [ó], Altman [ l ] , Kaniel [5], and 
others. In case the underlying space is a Hubert space, we deduce 
(see also Kaniel [5]) some theorems on strongly monotone operators 
obtained by Minty [7] and Browder [2], [3], [4]. Let us add tha t 
our conditions have a form which not only admits a simpler investi­
gation but a t the same time seem to be more natural and suitable for 
applications to numerical functional analysis. Furthermore, the 
method of our proof is basically constructive. In fact, we show in 
[9] that it is essentially the projection method of which the Galerkin 
method is one of its simplest realizations. The latter methods are 
known [8] to play an important role in the approximate solution of 
operator equations. 

2. Preliminary results. Let X be a finite dimensional Banach space; 
let Br denote the closed ball in X of radius r>0 about the origin and 
let Sr denote the boundary of Br. For later use we state first an es­
sentially known fixed point theorem whose brief proof, which is based 
on the Brouwer fixed point theorem and the retraction mapping prin­
ciple is given in [9]. 

THEOREM 1. Let A be a continuous mapping of Br into X and let p 
be any constant. Then there exists at least one element u in Br — Sr such 
that 

(1) Au — ixu = 0 

provided that the mapping A satisfies the condition'. 
(TH): If f or some x in Sr the equation Ax=ax holds then a<ii. 
1 The expanded version of this paper with detailed proofs will appear in [9]. 
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Let us note that our Theorem 1 is equivalent to Theorem 1 proved 
in [5] by a more complicated argument. For other special cases of 
Theorem 1 see [9], 

3. Main results for infinite dimensional spaces. In order to gen­
eralize Theorem 1 to operators defined on infinite dimensional real 
Banach and Hilbert spaces we assume that the Banach space X has 
the property that there exists a sequence {Xn} of finite dimensional 
subspaces Xn of X, a sequence of linear projections {Pn} on X, and 
a constant K > 0 such that 

(2) PnX = Xn, Xn C Xw+1, n = 1, 2, 3, • • • \J Xn = X, 
n 

(3) IIPJI £K, n = 1, 2, 3, • • • . 

REMARK 1. In this paper we shall use the symbols "—>" and "—*" 
to denote the strong and weak convergence in X, respectively. 

For operators A defined on X or on a subset of X, we consider here 
only those operators^, which are bounded,2 i.e., operators which map 
bounded sets in X into bounded sets in X. 

DEFINITION 1. A nonlinear operator A will be called P-compact if 
PnA is continuous in Xnfor all sufficiently large n and if f or any con­
stant p>0 and any bounded sequence {xn} with xnÇzXn the strong 
convergence of the sequence {gn} = {PnAxn —pxn} implies the existence 
of a strongly convergent subsequence {xni} and an element x in X such 
that xni—>x and PniAxni—>Ax, as nr~»<*>. 

For this class of operators the following fixed point theorem is valid. 

THEOREM 2. Suppose that A is P-compact. Suppose further that f or 
given r > 0 and JU > 0 the operator A satisfies the condition : 

(7T/*): If some some x in Sr the equation Ax —ax holds then a < / r , 
then there exists at least one element u in (Br — Sr) such that 

(4) Au — iiu = 0. 

PROOF. The proof of Theorem 2 depends on Theorem 1 and the 
following lemma. 

LEMMA 1. If A satisfies the conditions of Theorem 2, then there exists 
an integer no > 0 such that ifn^n0 and PnAx = fix for some x in Sr(^Xn 

then ]8</x. 

PROOF OF LEMMA 1. Let us first note that in view of (3) and the 

* The much more general results analogous to Theorems 2 and 4 below (to be pub­
lished elsewhere) were since obtained by the author without the assumption that A be 
bounded. 
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boundedness of A there exists a constant c>0 such tha t ||P„i4^|| ^c 
for all x in Br. If the assertion of Lemma 1 were not true, we could 
find a sequence {xn} with xnÇzXnr^Sr and a sequence of numbers 
{f$n} such tha t 

(5) PnAXn = PnXn, (fin è M ) . 

Hence 

Pnf = \\pn*n\\ = | | P » i l s » | | â £, 

i.e., j8nG [M> C A ] f ° r e a ch n. Passing to a subsequence, we may assume 
that fin—>j8 and /3£ [M> ^A]« This and (5) imply that 

(6) PnAxn — j(3#« = (fin — jo)*» -» 0, (»—>») . 

Since A is P-compact, (6) implies the existence of a strongly con­
vergent subsequence, which we again denote by {xn}, and an element 
x in Sr(^X such that 

(7) xn —> # and Pw^4#w —-» ^4^. 

This and (6) imply tha t Ax—fix = 0 for x £ S r and |3^/i in contradic­
tion to the condition (7i>) of Theorem 2. 

PROOF OF THEOREM 2 COMPLETED. By Lemma 1, we can use Theo­
rem 1 for the finite dimensional spaces Xn and the operators PnA. 
Consequently, there exists an integer N0>0 such that for each n^N0 

there exists a t least one element un in BrC\Xn such that 

(8) PnAun — jxun = 0. 

Therefore, again by the P-compactness of A, there exists a subse­
quence again denoted by {un} and an element uÇz.BrC\X such that 
un-^>u, PnAun—*Au, and Au— /xw = 0. The last equation implies that 
uÇz(Br — Sr) since the assumption that u(ESr would lead to the con­
tradiction of condition (7rM). 

REMARK 2. I t is obvious tha t if in Definition 1 we require p < 0 in­
stead of p>0y then we get a theorem analogous to Theorem 2. We 
need only consider —A instead of A and assume that for some r > 0 
and any J U < 0 instead of the condition (ir») the operator A satisfies 
the condition (TT~): If for some x in Sr the equation Ax —ax holds 
then ce>ju. 

To see what type of operators belong to the class of P-compact 
operators let us first recall (following [3], [4], [S], [7]) that : 

A is demicontinuous if implies A 
A is quasi-compact if A satisfies the following conditions: (i) A is 

bounded, (ii) implies PmAxn—>PmAx for w = l, 2, 3, 4, • • • , 
(iii) if for some X > 0 the sequence {gn} = {Axn+\xn}, where xn is a 
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bounded sequence, is strongly convergent, then there exists a strongly 
convergent subsequence {xnA of \xn), (iv) if for some \ > 0 the 
sequence [gn} = {PnAxn-\-\xn}, where xn is a bounded sequence with 
Xn&Xn is strongly convergent, then there exists a subsequence {xni} 
which is strongly convergent; 

A is strongly continuous if xn—^x implies A Xfi ^.A. x , 
A is monotone increasing on the Hilbert space X — H if (̂ 4x — .43;, 

x — 3/) ^ 0 for all x and y in iJ ; 
A is monotone decreasing if — ̂ 4 is monotone increasing; 
4̂ is hemicontinuous if it is continuous from each line segment in H 

to the weak topology in H. The following theorem whose simple proof 
is given in [9] specifies the relation between the operators defined 
above and the class of P-compact operators. 

THEOREM 3. The class of P-compact operators with p<0 includes: 
(a) Completely continuous and strongly continuous operators on X. 
(b) Quasi-compact operators in X. 
(c) Hemicontinuous (and hence demicontinuous, continuous and 

weakly continuous) monotone increasing operators in X = H. 

THEOREM 4. Let A be P-compact and suppose that there exists a se­
quence of spheres STn and a sequence of positive numbers kn-^> 00 such 
that for any r}^jj,>0 and any xÇzSTn 

(9) \\Ax - rjx\\ ^ *». 

Then for every fÇ^X there exists an element x which satisfies the equation 

(10) Ax — fix = ƒ. 

4. Special cases. In this section we show that for the Banach space 
X satisfying (2) and (3) many of the known fixed point theorems are 
special cases of Theorem 2. Thus, we supply elementary and essen­
tially constructive proofs of these theorems. 

THEOREM S (SCHAUDER). If A is a completely continuous mapping 
of Br into Br, then A has a fixed point in Br. 

PROOF. We may assume, without loss of generality, that A has no 
fixed points on Sr. First, by Theorem 3(a), A is P-compact and sec­
ond if Ax = ax for some x in 5 r , then the condition A(Br) <ZBr implies 
that a<l. Hence by Theorem 2, A has a fixed point in (Br — Sr). 

In a similar way we also deduce1 from Theorem 2 the following: 

THEOREM R ( R O T H E ) . If A is a completely continuous mapping of 
Br into X such that A(Sr) C.Br, then A has a fixed point in Br. 
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THEOREM A (ALTMAN). If A is a completely continuous mapping of 
Br into X such that \\Ax — X | | 2 ^ | | ^ 4 X | | 2 ~ | | X | | 2 for all x in Sr, then A has 
a fixed point in Br. 

If X is a Hubert space, Theorem A was first proved by Krasnosel-
sky [6]. 

THEOREM K ( K A N I E L ) . If A is a quasi-compact mapping of Br into 
X such that AX+\XT*0 for all x in Sr and any X>/*>0, then there 
exists an element u in Br such that AU-\-IAU = Q. 

The following apparently new comparison theorem is also valid. 

THEOREM 5. If A and B are two P-compact mappings of Br into H 
such that 

(11) {Ax, x) g ||x||2 and \\Ax - Bx\\ ^ \\x - Ax\\ for allxinSr, 

then B has a fixed point in Br. 

If X is a Hubert space H and A is a monotone decreasing operator 
on H, then one of the first important theorems of Minty [7] says 
essentially that if A is continuous and ju > 0 then the operator (A —ixl) 
is onto. In [3], [4] Browder has proved this theorem (as well as 
other more general theorems) for demicontinuous and hemicontinu-
ous operators while Shinbrot [12] established its validity for weakly 
continuous operators A, In view of our Theorem 3, Remark 2, and 
the fact noted in [5] tha t monotone increasing operators C= —A 
satisfy the condition (9), it follows1 tha t these particular results of all 
of the above authors are immediately deducible from our Theorem 4. 
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1. Introduction. We will prove the following lemma and investi­
gate some of its implications: namely, a short proof by Goldberg [ l ] 
of the basic perturbation theorem of Kato [2], avoiding previous 
homotopy arguments; an extension of results of Trotter and Nelson 
[3] for semigroup generators; and a criterion for well-posed per­
turbed problems in spaces tha t are not necessarily complete. For 
further references and more information, see [ l ] , [2], and [3]. 

Throughout this paper all operators are linear with domains sub-
spaces of a normed linear space X and ranges subspaces of a normed 
linear space F. If an operator B perturbs an operator T, we assume 
tha t D(B)DD(T). 

In this section, the spaces need not be complete. 

LEMMA 1. Let T"1 and B be bounded operators with ||i3|| < | | r - 1 | | _ 1 . 
Then 

(1.1) dim F/Cl (R(T)) = dim F/Cl (R(T + B)). 

PROOF. 2 We use the known result (e.g., see [ l ] for a proof) that 
if H^MIr-1!]-1, then 
(1.2) dim F/Cl (R(T + B)) g dim F/Cl (R(T)). 

1 Partially supported by a NATO postdoctoral fellowship. 
2 Concerning this little result, let ||J3|| <a||r~1||~1. The author appreciates dis­

cussions with Dr. Seymour Goldberg, who proved it for a = 1/2 in his lectures. The 
main trick in the proof can be seen for the case a = 3/4. The author also appreciates 
the aid of Mr J. Kuttler in extending the result from « = 3/4 to a = 7/8. 


