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COMMUNICATION THEORY 
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Information theory, communication theory, detection theory are 
terms now commonly used by engineers who are concerned with radio 
or telephone communications, electromagnetic and sonic measure­
ments, seismic measurements, and indeed the transformation, storage 
and transmittal of data from any source by electronic or mechanical 
devices. They are terms also used by scientists concerned with the 
function of the human brain and nervous system, the behavior of 
small groups of people, the interplay between men and machines, and 
the behavior of whole societies. Coupled with the study of transmit­
tal of information is the study of use of information in mechanisms, 
and at least one direction this latter study leads is toward the mod­
ern theory of control. Norbert Wiener was interested, as is well 
known, in this whole broad expanse of problems; he made this inter­
est completely explicit in his invention of the word cybernetics, and 
his explication of its meaning in the book Cybernetics [138].* One of 
Professor Wiener's contributions to the scientific society was his 
recognition and insistence that communication and control problems 
which occur in very different contexts often have the same essentials; 
or, stated differently, tha t there was potentially a science of com­
munication and control. However, it is beyond the scope of these re­
marks, and beyond my competence, to talk about his work from such 
a general point of view; so the comments here shall refer only to 
communication theory as it applies to electrical engineering tech­
nology. 

In I am a mathematician [177] Wiener says "One interesting prob­
lem which we attacked together was that of the conditions restricting 
the Fourier transform of a function vanishing on the half line. This is 
a sound mathematical problem on its own merits, and Paley attacked 
it with vigor, but what helped me and did not help Paley was that 
it is essentially a problem of electrical engineering." The solution to 
this problem for functions of class L2 is contained in Theorem XII of 
Fourier transforms in the complex domain [92], where it ostensibly 
plays the role of a key result in the theory of quasi-analytic functions. 
This theorem was explicitly pointed out to engineers, and its implica-

* The bold-faced numbers in brackets refer to numbered references in the Bibliog­
raphy of Norbert Wiener. Bold-faced numbers in parentheses refer to the References 
at the end of this article. 
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tions to electric circuit synthesis discussed, by H. Wallman in the 
M.I.T. Radiation Laboratory Series fourteen years later (1). It is a 
theorem very well known to mathematical analysts, but it also be­
came, many years after its statement, very well known to electrical 
engineers. It might almost be called the fundamental theorem of 
linear electric networks instead of the fundamental theorem of quasi-
analytic functions, as Wiener dubbed it. Its significance to engineer­
ing is the following: a linear, time-invariant system in a known state 
at t = 0 can be characterized by its response to an impulse at / = 0, or 
by the Fourier transform of that impulse response. The Fourier trans­
form of the impulse response is known as the transfer function of the 
system and is a valuable concept for the engineer, both because it is 
useful in calculations, and because it is useful in designing and inter­
preting experiments. Its complex value at a particular frequency 
represents the gain and phase shift of the system at that frequency. 
The Paley-Wiener theorem gives a necessary and sufficient condition 
that a given gain function be possible for a linear, time-invariant sys­
tem that is realizable, that is, that operates only on the past. It is 
remarkable that Wiener knew at the time he and Paley worked on this 
theorem that it was electrical engineering, because few electrical engi­
neers at that time would have recognized it as electrical engineering. 

This one theorem and its history of application strikes me as typical 
of a large part of Wiener's contribution to the development of mod­
ern communication theory. Whether in all such instances he knew he 
was providing mathematical structure for communications theorists 
and engineers ten, twenty or thirty years hence, I do not know, but 
he evidently often hoped that he was. He did, of course, receive early 
orientation in problems of electrical engineering in discussions with 
Vannevar Bush in the 1920's, and these discussions must have been 
unusually sophisticated by the engineering standards of that time. 
His collaboration with Y. W. Lee somewhat later, and contacts with 
various electrical engineers from the time of World War II onward 
kept strong his ties with electrical engineering. 

In a communication theory problem, man-made signals must al­
ways be of finite duration, and often their duration is limited by a 
fixed bound. An electrical signal of finite duration has finite energy. 
Hence, if one is concerned with an harmonic analysis of such signals 
in the communication system, the Paley-Wiener theorem (Theorem 
X, op. cit.) characterizing the class of functions 

F(z) = { f(u)eiuzdu, 
J -A 
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where f(u) belongs to L2 over (—^4, A) is basic. I t also applies, of 
course, to the structural characterization of linear systems with finite 
memory, i.e., systems whose response to any input goes to zero within 
some interval r after the stimulus is removed. The theorem has per­
haps been less useful in application than the one cited first; I think 
this is so because the condition is a function-theoretic one instead of 
an integrability one, and therefore farther removed from the kind of 
constraints that appear "naturally," but this difficulty would seem 
to be inherent and unavoidable. 

In the introduction to Generalized harmonic analysis [73] Wiener 
says, "The two theories of harmonic analysis embodied in the classical 
Fourier series development and the theory of Plancherel do not ex­
haust the possibilities of harmonic analysis. The Fourier series is re­
stricted to the very special class of periodic functions, while the 
Plancherel theory is restricted to functions which are quadratically 
summable, and hence tend on the average to zero as their argument 
tends to infinity. Neither is adequate for the treatment of a ray of 
white light which is supposed to endure for an indefinite time." 

The reference here is obviously to harmonic analysis in an L^ con­
text; with that limitation one may say that the Fourier transform 
yields an harmonic description of functions of finite energy, and the 
Fourier series yields an harmonic description of a very special class of 
functions of finite power (i.e., infinite total energy, but finite energy 
per unit interval). What was needed and what Wiener developed was 
an harmonic description of a wide class of functions of finite power, 
including the classes of periodic and almost periodic functions, bu t 
also including functions with a continuous or mixed "power spec­
trum." 

The class of functions to which Wiener's generalized harmonic 
analysis applies is tha t of those measurable functions ƒ(/) for which 

(1) *(T)« l im^- fTf(r + t)fV)dt 

exists for every r. This restriction has interesting heuristic implica­
tions; for <j>(0) to exist means obviously that the indefinitely continu­
ing function ƒ(0 has associated with it an average power; for <£(r) to 
exist in general would indicate that , almost all of the time, fit) ex­
hibits some kind of average regularity in its behavior. One would ex­
pect tha t many physical phenomena that are random and unpredicta­
ble in their course, but appear in an environment for which the grosser 
attributes are unchanging, would be appropriately modeled by such 
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functions. Experience has borne this out, of course. One very im­
portant example is electrical noise as generated by a resistor a t con­
stant temperature, or by a vacuum tube or transistor under constant 
operating conditions. Since electrical noise is one of the chief in­
gredients in any continuous-time electrical communication problem, 
Wiener's generalized harmonic analysis is a fundamental tool in the 
analysis of such problems. I t has to a certain extent been replaced 
formally in the analysis of electrical noise by the introduction of the 
stationary stochastic process as a mathematical model for noise 
phenomena. The theorem of Bochner that a positive-definite func­
tion is the Fourier-Stieltjes transform of a bounded monotone func­
tion, and the theorem of Khintchin that autocorrelation functions of 
stationary processes are positive-definite functions then provides an 
harmonic analysis which fits pretty much the same problems as the 
Wiener generalized harmonic analysis. Since the Birkhoff ergodic 
theorem guarantees that for almost every sample path of a metrically 
transitive stationary stochastic process the limit 4>(T) as given in (1) 
exists and equals the autocorrelation function of the process evalu­
ated at r, the Wiener theory and the stationary process theory appear 
to one interested in physical applications to be equivalent in a strong 
sense. To apply the Wiener theory one has to represent the physical 
phenomena by a function f(t) such tha t $(r) exists; to apply the 
stochastic process theory one has to represent the physical phe­
nomena by a stationary, metrically-transitive process. The extra-
mathematical arguments to justify these two models seem pretty 
much the same. The Wiener theory came first; and it retains interest, 
I feel, even in applications, precisely because it deals with a single 
function instead of an ensemble of functions. 

Electrical noise is usually such that it not only admits being repre­
sented as a stationary stochastic process, but more specifically as a 
stationary Gaussian stochastic process. This is true because the noise 
(voltage or current) is generally a macroscopic manifestation of the 
result of a great deal of independent activity at a microscopic level. 
The basic theory of Brownian motion developed by Wiener is indis­
pensable for a meaningful study of stationary Gaussian processes 
with finite variance; the spectral representation of Cramer is in terms 
of Brownian motion for the Gaussian case; the really workable 
models for practical calculations involving Gaussian noise are "filtered 
white noise" processes, i.e., processes of moving averages, 
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where %(u) is the Brownian motion process. Modern "noise theory" 
and "detection theory" are applied mathematical disciplines resting 
chiefly (for their mathematical part) on parts of the theories of sto­
chastic processes, harmonic analysis and statistical inference. For the 
first two of these Wiener's contributions are a primary source. 

I have made this brief reference to some of Wiener's pure mathe­
matics, because its influence on contemporary electrical communica­
tion engineering is perhaps greater than most mathematicians real­
ize. I would like to distinguish between this applicable mathematics 
and a certain body of his work, mostly of later date, which seems to 
be more properly applied mathematics (or even theoretical engineer­
ing). I t is a somewhat arbitrary distinction and has to do not only 
with subject matter but with style of writing, the presumed class of 
readers, and the emphasis or lack of emphasis on rigor. 

The book Extrapolation, interpolation, and smoothing of stationary 
time series [144] published in 1949, but originally written as a war­
time report to the National Defense Research Committee, is a 
borderline case, but it seems to me to belong to the second category 
of applied mathematics. I t was written primarily for electrical engi­
neers, even though most electrical engineers of the 1940's could not 
read it. This was perhaps not a bad thing; the results were sufficiently 
interesting to provide a stimulus to engineers to acquaint themselves 
with enough mathematics so that they could read it. In 1965 most 
theoretical communications and control engineers can read it, and in 
fact are fairly conversant with its contents. There is now probably 
not a graduate program in control and communications engineering 
in the country in which the material of this book is not offered. Wiener 
lost priority to A. N. Kolmogorov for the essential mathematical re­
sults of the prediction theory (see the footnote p. 59, op. cit., for 
Wiener's own comment on this), but his work was done indepen­
dently of Kolmogorov's and it was addressed more explicitly to the 
filtering problems of electrical engineering. 

One kind of problem to which the Kolmogorov-Wiener theory ap­
plies may be stated in general terms as follows: let s(t), — oo <t< oo, 
be an intelligence-bearing signal, n(t)f - -oo<£<oo , a noise which 
interferes with s(t) so tha t an observer has available only y(t) =s(t) 
+n(t). Suppose the observer wants a time-realizable, running esti­
mate of s(t) ; tha t is, for each / he wants §(t) =L(t)yt, where the func­
tion § should be close to 5 by some criterion, where 

yt(u) = y(u)> u g / 

= 0, u > t> 
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and where L{t) is a functional defined on the class {yt} for a suitably 
large class of functions y. The problem is to find a set of functions 
L(t), — oo <t < oo, which makes S close to s. This is the kind of prob­
lem that occurs for example in designing a receiver for radio trans­
missions; the receiver is an apparatus which implements the opera­
tions L(t). 

In the original Wiener solution to this basic "smoothing" problem it 
is stipulated tha t : (1) Both s(t) and n{t) be functions satisfying (1), 
so tha t each has an autocorrelation function, and further that the 
cross-correlation function 

1 fT 
4>m{r) = Hm I s(t + r)n{t)dt 

exists for each r. These correlation functions are to be known in ad­
vance. 

(2) The operations L{t) are to be linear operations, 

*(/) = L(t)yt = f y(f- r)dK{r) 

which are time-invariant. 
(3) The criterion for the closeness of §(t) and s(t) is the mean-

squared-error, 

(3) 
1 rT\ fw 

lim — k O - y(t- r)dK(r) 
T->» Li J __r| J o 

2 

dt. 

The solution for K(T), or rather for its Fourier-Stieitjes transform, is 
given in Equation (3.28) op. cit. The solution is formally the same if 
condition (1) is replaced by the condition that s(t), n(t) and (s(t), 
n(t)) are stationary stochastic processes and the time-average auto 
and cross-correlation functions are replaced by the corresponding 
statistical averages, as, for example, 

1 C 
lim 
T-» 2 2 V _ 

T 

s(f + r)s{l)dt ~ Es(t + r)s(t), 

where E denotes mathematical expectation, and if the criterion (3) is 
replaced by 

y{t-r)dK{r)\ 
o I 

for each t. Further, if s(t)> n(t) and (s(t), n(t)) are metrically transi-
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tive, the solution is exactly the same for each pair of sample functions 
$00, n(t) except for those in a set of probability zero. 

Modern communication and signal detection theory began when it 
was realized that a meaningful way to treat such a problem was to 
treat it statistically, to ascribe to s(t) and n(t) certain average prop­
erties, rather than to specify them explicitly, and to use some kind of 
statistical or average criterion to judge the closeness of $ to s. There 
is, of course, a great variety of changes on such a problem ; the per­
turbation may not be caused by simple additive noise, the structure 
of possible signals s(t) may be more or less narrowly specified, the 
a priori statistical information available may vary widely in kind 
and quantity, the statistical criteria need not be mean-squared-error, 
etc. The statistical point of view had gained some acceptance during 
and shortly after the war, due largely to the work of a dozen or so 
people, some of whom were mathematicians and physicists who had 
been led to think of radio communication (and measurement) prob­
lems because of their wartime jobs. I will venture the opinion that 
there were three papers or monographs published in this country in 
the middle and late 1940,s tha t were more than any others respon­
sible for establishing statistical ratio communications (and radio 
measurement) theory; these are the papers on random noise by S. O. 
Rice (2), on information theory by C. Shannon (3), and the mono­
graph on smoothing and predicting by Wiener [144]. 

The original theory of filtering and prediction was linear (although 
Wiener also wrote on nonlinear prediction, see [170], [196]). I t fitted 
neatly onto Wiener's earlier work on generalized harmonic analysis 
and his work with E. Hopf on a class of linear integral equations [78]. 
But Wiener was also interested in nonlinear problems in enginering; 
he wanted to provide a rather general structure of theory to support 
problems in the synthesis and analysis of nonlinear electrical net­
works and other nonlinear systems. Apparently most of what he did 
in this area was done in the 1940's, but he published only one report, 
Response of a Nonlinear Device to Noise, M.I.T. Radiation Laboratory 
Report No. 129, 1942, and no papers in the scientific journals. The 
first really open publication was the set of lectures, Nonlinear Prob­
lems in Random Theory [ l 9 l ] , in 1958. Some of this work was done 
in collaboration with Y. W. Lee, and initiated a considerable body of 
engineering research by Lee and his students in the years after 1950. 

Wiener considered nonlinear systems whose output at a particular 
instant when driven by Brownian motion could be written as func­
t i o n a l of the Brownian motion of the form 
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(4) y (a) = Ko+^2 I • • • I Kn(rh • • • , r») dx(rh a) • • • dx(rn, <x) 

where the kernels Kn are characteristic of the system and where 
#(r, a) is Brownian motion. If the output at a time t seconds later is 
represented by the same functional except with the arguments of the 
Kn translated by t> this expression gives the running output of a time-
invariant nonlinear system. If two systems yield the same output 
y(a) when excited by #(r, a) for all a in a set of probability one, they 
are equivalent in a strong sense; they would certainly seem to be 
equivalent for all engineering purposes. An engineering analysis prob­
lem, then, is to find the Kn's for a given system specified in some 
arbitrary way; a synthesis problem is, e.g., to specify an electrical 
network which will realize a given set of Kn's. Wiener attacked these 
problems by first orthogonalizing the sequence of homogeneous poly­
nomial integral functionals appearing in (4) into a sequence of non-
homogeneous polynomial integral functionals Gn(Kn, a) with the 
property that Gn(Kny a) is orthogonal to Gm(Hmi a ) , m^n, for any 
kernel Hm, with respect to Wiener measure. Then any functional of 
the form of (4) can be written 

(5) y(a) = EC(fi,a) 
n 

for an appropriate choice of kernels Kn' , where now the summands are 
orthogonal in a statistical sense, i.e., with respect to Wiener measure. 

This work of Wiener and Lee (see also (4)) together with the con­
tributions of three or four others largely set the direction that has 
been followed since for most of the investigations of a general theory 
of nonlinear communication and control systems with stochastic in­
puts. Usually the computational complexities arising when one tries 
to apply such general theory to a specific problem are so great that, 
thus far, the practical results are limited. Ad hoc procedures are often 
more effective. There is hope, of course, that electronic computation 
will eventually overcome these difficulties. 

Finally I should like to note that apart from the theorems he 
proved and the calculations he made, Wiener performed one other 
service f or electrical communication engineering: he was an effective 
propagandist for the new ideas of the 1940's about the statistical 
nature of information and its transmission. Because of his prestige 
as a mathematician, but more than that , because of his reputation 
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amongst engineers as a first rank mathematician aware of electrical 
engineering problems, he was listened to when he made statements 
such as the following, from the magazine, Electronics, 1949 [145]: 
"There is no vagueness in the definition of energy, so that power engi­
neering is a field in which the objectives have been fully understood 
for a long time. On the other hand, most books on communications 
say nothing about information, and the average communication engi­
neer does not have a definite measure of information. He studies 
communication circuits as they are affected by sinusoidal inputs, but 
he does not discuss the relation between sinusoidal and information-
carrying inputs. Only within the past few years have a few engineers 
begun asking what information is and using the concept of informa­
tion as a basis for design." 

"Because information depends, not merely on what is actually said, 
but on what might have been said, its measure is a property of a set 
of possible messages, or of what is called an ensemble in statistical 
mechanics. Such as ensemble is more than a set taken simply; it is 
a set to which is attributed a probability measure. We thus have a 
situation tha t is closely akin to tha t in statistical mechanics, more 
especially in the form which Gibbs gave it." 
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