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AND FILTER THEORY 

BY P. MASANI 

0. Prologue. The strong cohesive forces permeating the work of 
Norbert Wiener complicate the task of surveying his contributions to 
specific areas. Where is one to begin and where to end? In the realm 
of prediction, for instance, Wiener's book [TS]1 stands out as his 
first major contribution. But an important part of this book concerns 
the synthesis of predictors, for which as Kakutani remarked (32) : 
"The theory of generalized harmonic analysis developed by the 
author some 20 years ago is exactly the right tool . . . ." Now the 
latter theory, given in the memoir [GHA] of 1930, was itself the cul­
mination of researches begun in 1924, which were motivated by even 
earlier investigations in the theory of Brownian motion. I t would 
seem tha t a thorough review of Wiener's work in prediction should 
start from about the year 1919 when he looked at the Charles River 
from his office a t M.I .T. and began to wonder whether the Lebesgue 
integral was the right tool for the analysis of the undulating water 
surface. Such a review would be beyond the abilities of this writer, 
even if he were granted the necessary space. 

In this review we shall first survey those aspects of Wiener's great 
memoir [GHA] which bear on his later work on prediction and filter­
ing (I). We shall then describe briefly how the mathematical activity 
of the thirties influenced his thought (II). Next we shall discuss 
Wiener's general theory of nonlinear prediction (III) . From this we 
shall turn to his many contributions to linear prediction and filtering 
theory (IV). Lastly we shall dwell on his theory of filters (V). 

I. GENERALIZED HARMONIC ANALYSIS (1930) 

1. White light: the need for generalizing harmonic analysis. The 
optical origins of Wiener's work are best expounded from the stand­
point of the electromagnetic theory of light. At a fixed point r in a 
medium traversed by light the direction of propagation at instant t 
is given by the Poynting vector P ^ ^ ^ X ^ ) , where E(t), H(t) 

1 The bold-faced numbers in brackets refer to the numbered references in the 
Bibliography of Norbert Wiener. The bold-faced letters in brackets and numbers in 
parentheses refer to the References at the end of this article. 
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are the electric and magnetic vectors at t at instant t. The optical 
vector is identified with E(t) ; hence the instantaneous plane of optical 
vibration is that spanned by E(t) and P(t). When the light rays in 
the vicinity of t have a direction z independent of t, we can prescribe 
E(t) by its two components Ex(t), Ey(t) in (fixed) perpendicular direc­
tions x, y orthogonal to z. The light signal is called monochromatic if 
Ex, Ev are sinusoidal functions of the same frequency;2 otherwise 
polychromatic. Newton's experiments on dispersion revealed the 
polychromatic nature of sunlight, then called white light. 

What sort of harmonic analysis can we make of a white light signal 
ƒ ( = £*, say)?8 Classical theory offers but two alternatives: 

(1) Assume that ƒ is a generalized trigonometric polynomial or its 
limit: 

00 

f(f) = E ft**»', < € ( - * , » ) . 

This assumption entails that the spectrum is made up of a finite or 
countable number of sharp lines of intensities | Ck\2 at the frequencies 
o)k, & = an integer. What is observed, however, is a continuous 
band of colors. 

(2) Assume that ƒ £L 2 ( - -°° , °°). Then by the Fourier-Plancherel 
Theorem 

1 /•* 
f (A = I c(co)eiutdt (in the l.i.m. sense). 
JKJ V(27r)J_„ 

We now have as desired a continuous spectrum of energy on the 
frequency-band ( - co , <»). But now 

ƒ, 
t+h 

| ƒ (r) | HT -> 0, as t ~> ± oo (A fixed). 
t 

This means that the energy4 emitted by the signal during a time-
interval of fixed length h approaches 0 as the interval advances (or 
recedes) indefinitely on the time axis. This result conflicts with the 

2 The function/is called sinusoidal, if j\t) —A cos(o>J-f-a) =*öe-i<at-\-cei(at, tG( — « , oo ). 
co is the (circular) frequency, that is angular velocity, and 27r/w is the period. If 

gif) =ceiù)t, JE(— oo, » ), then g is often called a complex sinusoidal function of fre­
quency CO. 

8 It will suffice to study the analysis of just one of the component functions EXt Ev. 
4 From Maxwell's equations the flux of electromagnetic energy through a small 

surface (8S)r is proportional to |£(/) |2 , cf. (64, p. 333, (7-62)). Thus apart from a 
constant factor, | Ea(t) \2 represents the energy of the «-component. 
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standard theory in which the sun is treated as a permanent reservoir 
of infinite energy.6 

Neither assumption seems to explain the behavior of white light 
satisfactorily. Wiener felt tha t the difficulty stemmed from the limi­
tations of the classical harmonic analysis. Around 1924 he began 
developing a "generalized" analysis tha t could cover signals ƒ on 
(— oo, oo), which are on the one hand so irregular that their spectra 
are not made up of sharp lines alone, and on the other so lastingly 
vigorous that Jl+h\f(r) | HT H-» 0, as J—» <*>. In this venture he benefited 
from the ideationally deep though logically unrigorous investiga­
tions of the physicists Rayleigh, A. Schuster and G. I. Taylor, and 
from the work of mathematicians such as Hahn, Bohr and Bochner.6 

His researches culminated in his great memoir [GHA] of 1930. In 
this review we shall dwell only on those parts of [GHA] which bear 
on Wiener's later work in filter and prediction theory.7 

NOTATION. We shall not adhere strictly to the notations and con­
ventions used in [GHA] but adopt a few used by Wiener in later 
writings. For instance, we shall insert the factor 1/V(27r) in taking 
Fourier and Fourier-Stieltjes transforms, and write 

(1.1) ƒ(*) - ——— f f(y)e-*»dy, J(y) = — — f f(x)e*"dx. 
V (2TT) J -oo V (27r) J -.oo 

We shall also use the abbreviations "SP" for "stochastic process," 
and BMSP for "the Brownian motion stochastic process." 

2. The Wiener classes S and S'. As Wiener emphasized, the germs 
of generalized harmonic analysis were already in the work of Schus­
ter, but a "radical recasting" of the latter was necessary [GHA, 
p. 118]. From this recasting emerged the covariance function <f> of the 
signal ƒ : 

(2.1) 0(r) = lim — f f (f + r)Jit)dt, r £ ( - oo, oo). 

Accordingly Wiener considered the class S of all Borel measurable 
functions ƒ on ( — » , oo ), for which <f> is defined on ( •— oo, oo ), as 
well as the subclass S' of / £ S for which <f> is continuous at 0, and 
thence on (— oo, oo).8 We can show that S is closed under the trans-

8 This conception of the sun is of course untenable from a cosmological viewpoint, 
but it is a legitimate idealization for the study of short term optical phenomena. 

6 The limitations of classical harmonic analysis had been felt in pure mathematics 
as well, for example in Dirichlet series, and in the statistical analysis of time series. 
The reader should consult the bibliography in [GHA] for references to earlier work. 

7 Other aspects of [GHA] are perhaps discussed elsewhere in this number. 
8 The classes S, S' were actually introduced somewhat later, e.g., in [Fl]. 
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lation group (Ut, — <*><*< <x>), (Utf)(r) = / ( / + r ) , and that ƒ and 
Utf have the same <£, [FI, p. 155]. But $ is not a vector space. Also, 
as is easy to check, ^ is a positive definite function. 

Wiener then introduced the function S of which <j> is the Fourier-
Stieltjes transform, calling it the integrated spectrum of ƒ. (The cur­
rent term is spectral distribution of ƒ.) To appraise this work let us ig­
nore order of precedence and proceed logically. Two years after the 
appearance of [GHA] came Bochner's extension to the real line of 
Herglotz's theorem on the Fourier-Stieltjes representability of con­
tinuous positive definite functions (5, §20). In 1939 Cramer (11) 
showed tha t the continuity assumption is dispensable. Now let 
ƒ £ § . Then since </> is positive definite, it follows from the Bochner-
Cramer Theorem that 

(2.2) 0(0 = — — f e-*"dS(u), a.e., 
V (2TT) J _* 

where 5 is a bounded monotone increasing function, unique after 
proper normalization. I t is easy to check that an admissible version 
of S is 

1 CA ciut - 1 
<t>(f) -

A->«> \/(2TT) J -A it 
Wiener was obliged to proceed in a different way. He defined 5 by 

tA* <j)(t)eiut 

— . dt 
A~*oo \/(2IT)\J—A J i / it 

(2.4) 

(2.3) S(u) = 5(0) + lim — : — f <j>(t) -dt. 

SW=l.i.m.——( f + f \-Êzt 
A~*«> \/(2w)\J -A J I I it 

1 Cl <*iut - 1 
H I 0(0 ' dt, 

V ( 2 T ) J - I it 
[GHA, (3.19)-(3.21)]9 and showed by hard work that it could be re­
defined on a set of zero measure so as to make it monotonie increasing 
and in fact to satisfy (2.3), [GHA, (3.27), (3.28)]. He then showed 
that S is bounded ; and indeed that 

— J — { S ( o o ) - S ( - o o ) } = H m l f'<t>(t)dt 
V(27r) «~*o 2 e J _ € 

(2.5) S*(0)« lim —- f |/(0 \*dt, 

9 The factor 1/2T occurs in [GHA] in place of 1 / \ / ( 2 T ) . But in later works, e.g., 
[FI, TS] Wiener uses 1/V(2TT). Our choice of eiut (and not e"iut) in (2.4) and (2.3) 
agrees with that made in [GHA] and for SP's in [185, 186]. It has the merit of yield­
ing holomorphic functions in the upper (and not lower) half plane in cases of interest, 
but the disadvantage that the power distribution of ƒ is not S/V(2ir) but rather its 
"reflection* about the origin, cf. (4.4) et seq. below. 
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and that equality prevails if and only if / G S ' [GHA, (4.09), (4.10), 
(5.46) ]. Only then was Wiener able to recover cf> from S by the equa­
tion (2.2), [GHA, (5.40)]. 

We see that Wiener's treatment of S would have been appreciably 
simpler had the Bochner-Cramer result$ been at his disposal. But 
even in later writings he did not appeal to Bochner's theorem to 
define S but continued to use (2.4), cf. e.g., [TS, p. 42]. He did this 
perhaps to keep in sight the formal similarity between S and the 
important function s (below) which he had to define as a l.i.m. 

The Wiener theory of 5 received an important generalization when 
Bochner defined 5 for the wider class of functions ƒ such that 

(2.6) l i m - ^ r f f(t + r)Kr)dt 

exists for all / in ( •— oo, <x> ), where p is any positive increasing function 
on (0, oo) for which p ( r + l ) / p ( 7 > - » l , a sT-^oo , (5, pp. 294-295). 

We must next turn to another important function which Wiener 
associates with a function ƒ in S, viz. its integrated (or generalized) 
Fourier transform s. On comparing the S-theory with the classical 
1,2-theory we find that the covariance function <j> is the natural 
counterpart of the inner product function <£* in L2-theory defined by 

**(0 - r f(f + r)J{t)dt = - J — f V ^ | s*(u) \Hu 
J - * ) v ( 2 7 r ; «/-.«a, 

where s*=f, (cf. (1.1)). Since this can be rewritten 

4>*(f) = ' x f e-*"dS*(u), where S*(u)=f«„\s*(\)\*d\, 
V(2T) J _oo 

we see tha t Wiener's S is the counterpart of S*. Does the Fourier-
Plancherel transform s* itself have a counterpart s in the $-theory? If so, 
s would give the "generalized harmonic analysis" of an ƒ in S in some­
what the same way that 5*, i.e. ƒ, gives the "harmonic analysis" of 
an ƒ in L2. Wiener gave an affirmative answer to this question and 
established for s generalizations of classical results for ƒ. In doing so 
he has left us with some hard analysis for which no simpler substitute 
seems to have been found during the last 35 years. 

Wiener's work on s resembles to some extent that of Kolmogorov 
and Cramer on the spectral representation of a weakly stationary 
SP, a topic viewed best from the standpoint of Stone's spectral resolu­
tion for unitary flows on Hilbert spaces. The spectral representation 
involves stochastic integrals with values in the Hilbert space L2(ö, 
(B, P). One might at tempt to retrieve Wiener's results on s from this 
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representation by plugging in the random parameter co. But many of 
these results pertain to the time-averages of (very irregular) func­
tions in S, and it is doubtful if any except the very trivial can be had 
in this way, cf. Doob (19). 

We have thus to revert to Wiener's hard analysis involving "cer­
tain weighted averages" the appropriate tool for handling which is 
the "general theory of the Tauberian theorems developed by the 
author and applied to these problems by Mr. S. B. Littauer" [GHA, 
p. 119]. In this review we cannot go into this question. I t will 
suffice to say tha t Wiener defines 5 by the equation obtained from 
(2.4) by replacing <j> b y / , and to mention two very interesting results 
concerning s. First, 

1 r0 0 1 CT 

(2.7) lim | s(u + e) - s(u - e) \Hx = lim \f(t) \Ht\ 
€-»0 4TT€ J _oo T-> oo 2 T J - y 

in words, the "quadratic variation" of s equals the "rnean-square mod­
ulus" off [GHA, (5.53) & p. 119], [TS, (20.13)]. Next, [TS, p. 160, 
Theorem 28] an ƒ £ £ will be in S' if and only if 

(2.8) lim lim sup ( f + f ) | s(u + e) - s(u - c) \Hu = 0. 
4_>o «->o 47re\J _<» J A / 

We should also point out the limitations of s. Whereas the spectral 
representation involves a stochastic integral, Wiener's corresponding 
equation [GHA, (6.01)]: 

1 r * 
/(A I e-

ituds(u), a.e., 
JKJ V ( 2 7 T ) J _ 0 0

 W ' 

makes sense only when the right-hand side is interpreted as the Cesaro 
limit of a pseudo-Stieltjes integral, i.e., one defined by a formal 
integration by parts. This is so because 5 is not of bounded variation 
except in trivial cases, [GHA, (6.02), (6.05)]. Let us not forget, how­
ever, tha t the stochastic integral which Cramer and others have used 
with much success, but which Wiener could not use in his S-theory 
because of the absence of a random parameter, first appeared in 
Wiener's own work [29] of 1923, the integrator process of orthogonal 
increments being the BMSP. Let us add that Wiener also defined s 
for a wider class of functions than S, viz. the set of ƒ for which 
(l/2T)fLT\f(t)\ Ht is bounded, and the subset of the Bochner class 
for which the function p in (2.6) is p(T) == Tn, n being an odd positive 
integer [GHA, §6]. 

3. Multiple harmonic analysis and coherency. Wiener was able to 
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extend the foregoing ideas to vectorial signals with two or more com­
ponents / i , • • • , fqÇzS* [GHA, §9]. We assume that for K i , j<q, 

1 rT 

(3.1) 4>n(r) = lim —- I fi(t + r)fj(t)dt exists. 

Then by the Schwarz inequality 

I *y(r) M #«(0)*yX0). 

We are thus led to the qXq matrix-valued function <j>= [pij], called 
the covariance function of the #-ple signal / = ( / i , • • • , ƒ « ) • pij is 
called the covariance of fi and ƒ,-. 

Again let us discard the historical order and proceed logically. The 
equations (3.1) reduce to the single matrix equation 

1 rT 

(3.2) p(r) = lim /(/ + r)f*(t)dt 
r-»» 2TJ -T 

in which ƒ is a column vector and /* is its adjoint and therefore a 
row vector. The integrand is thus the qXq matrix with 

Mt + r)M) 

in the (i, j)th entry. From this it readily follows that <j> is a function 
of non-negative type, i.e., 

and for all qXq matrices Ci, • • • , Cwand all real numbers tu * • •» tn , 

n n 

y^ y^ d§(ti — />)C/ = a non-negative hermitian matrix. 

Hence by the matricial extension of Bochner's Theorem, cf. Cramer 
(11), (12)10 there exists a bounded qXq hermitian matrix-valued func­
tion S = [Sij] on (— oo, oo ) with non-negative increments such that 

(3.3) <!>(/) = —^— f V<MS(X), a.e. 

i.e., 

V (Z7r) J -oo 
a.e., 1 g y, & g g. 

10 Our concept of matricial non-negative type functions is not delineated in Cramer's 
papers [ll], [l2]. But by introducing this concept we can get the matricial extension 
of Bochner's Theorem by using the very arguments which Cramer advances 
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Since each Sy& is of bounded variation and 5# is real and monotonie 
increasing, these equations make sense. Again Wiener was obliged 
to proceed differently. He defined Sjk by 

1 C °° e*ut 1 
S*(U) - — — 0y*(O dt, 

V (27r) •/ _oo tt 

asserting that the last integral converges and that the matrix \S^\ 
so obtained has the properties just mentioned. (There is unfortu­
nately some hand waving in this section of [GHA].) 

The matrix function S is called nowadays the spectral distribution 
junction of the vectorial signal /. Wiener called it the coherency matrix 
of /. I t is trivial to check that if é(t) = Af(t), where A is a constant 
pXq matrix, then the covariance and spectral matrices of the £-ple 
signal g are A$A* and ASA*. In particular taking /> = 1 we get the 
covariance and coherency matrices of the signal ƒ = X X i ajfj: 

(3.4) <t>(t) == L Z) *i**4>jh(t), 5(X) = E E M*SV*(X). 

Wiener defined two signals / i , / 2£S to be incoherent11 when the 
cross-covariance function <t>n or (equivalently) the cross spectral dis­
tribution 5i2 vanishes identically, i.e., when the covariance and spec­
tral matrices of the 2-ple signal / = ( / i , ƒ2) are diagonal: 

<,„[*» «I s r * . ° 
Lo * „ J Lo 522 

When the signals ft, • • • , ft are pairwise incoherent, (3.4) reduces to 

4. Optical power, coherence and polarization. Wiener's theory of 
the 8 class helped to clarify the optical concepts of power (i.e. in­
tensity or brightness), coherence, and polarization. The statistical 
character of these concepts had been discerned by the physicists but 
they were unable to unravel the mathematical intricacies. The fol­
lowing account is based on Wiener's writings in optics [66], [168] and 
not just on [GHA] where the relevant exposition is somewhat sketchy. 

(i) In view of the proportionality of | E(r, t) | 2 to the flux of electro­
magnetic energy through a small surface at r perpendicular to the 
direction of propagation (cf. Footnote 4), it is natural to define 

• 

11 He did not do so explicitly in [GHA], but his remarks suggest that he had it in 
mind, cf. [TS, p. 45]. 
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ƒ
00 

I ƒ(') I 2 * , 

i rTi i 
(4.2) the total power12 off = lim I | ƒ(/) \Ht = 0(0). 

Thus all signals ƒ in S have finite power and the nontrivial ones (for 
which 0(0) 5^0), such as steady white light signals, have nonzero 
power and infinite energy. Signals in J L 2 ( ~ °°, °°), so-called transients 
or pulses, have zero power and finite energy. 

For the complex sinusoidal signal, f{t) — cei<a\ J £ ( — oo, oo), it fol­
lows at once from (4.2) that the total power is | c | 2 . Next for the 
signal 

(4.3) f(f) = E cke^\ * € ( - < » , « > ) 

we easily find that 

(4.4) 0(0 = Z k | V»*<, S(u)/V(2r) = Z I ft 12-
fc«l — oo<—w&gt» 

Thus {S(w2) — S(ui)} I V(27r) is the power due to the frequencies in the 
interval [ — #2, — «1). In other words, for the signal ƒ in (4.3) the reflec­
tion about 0 of 5/V(27r) gives the distribution of power or intensity over 
the frequency band. Naturally, we retain this interpretation of S when 
ƒ is any arbitrary signal in 8. For signals f £ S ' , 

( 5 ( o o ) - 5 ( - o o ) } / V ( 2 x ) 

equals 0(0), the total power of the signal/ , cf. (2.5) et seq.; but for 
signals ƒ £S—S', {5( 00 ) — S( — 00 )} / V(2TT) is the power due to finite 
frequencies only, and 0(0) — {S( 00 ) ~ 5( — 00) ]/^/{2TT) is that arising 
from the frequencies ± 00. Thus the class S — S' comprises precisely those 
signals which have infinite frequencies in addition to finite frequencies. 

(ii) In the preliminary stages of optics light signals / i , /2 are con­
sidered to be coherent or interfering when the intensity of the signal 
/ i+ /2 is "noticeably greater" or "noticeably smaller" than that 
"ordinarily" observed. The signals are said to be incoherent when the 
phase difference "varies rapidly and irregularly with time," so that to 
the eye or other optical device the result appears as a steady inten­
sity, cf. Rossi (64, p. 119). Wiener explicated this provisional and im­
precise concept of coherence by defining/i,/2 to be completely incoher­
ent when the cross-covariance 0i2(O « 0 for all J £ ( ~ • 00, 00), and to 
be completely coherent in case 0i2(0 =011(0 f ° r each t. Following him, 

12 In [GHA] Wiener uses the term "energy," but this is rightly discarded in favor 
of "power" in later writings, e.g. in [TS, p. 42]. 
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we may interpret <j>n or a suitable function containing it, such as 
#12/%/($ii#22) or the matrices <[> and S, as measures of coherence. 

With these definitions Wiener was able to explain why the intensity 
I of the superposition / i + / 2 of two completely incoherent signals 
fiy /2 is I1+I2. This fact13 was puzzling, since Maxwell's equations 
tell us that the intensity is proportional to | / ( / ) | 2 , and obviously 
| / i ( 0 + / 2 ( 0 | 2 ^ | / i ( 0 | 2 + | / 2 ( 0 | 2 . Wiener's explanation went some-
what as follows. Since neither the eye nor any other optical device 
can resolve the very rapid fluctuations of intensity which occur be­
cause of the very large number of independent atomic sources in­
volved, the observed intensity of ƒ is really a time-average 
I = (l/2T)JIT\f(t)\ 2dt. In this average even a short duration T, e.g. 
1 microsecond, is so great from the atomic standpoint that the error 
committed in letting T—><x> and replacing I by 0(0) is insignificant. 
In effect, the observed intensity of f is 0(0). Now in c a s e / = / i + / 2 we 
have 

0(0) = 0n(O) + tf>22(0) + 2 real 012(O) 

which, when the light signals are incoherent, i.e. 0i2(O) = 0 , reduces to 
/ = / i + / 2 . 

(iii) A light signal with a fixed direction of propagation z a t a 
point r is called elliptically polarized, if the tip of E(t) describes an 
ellipse in the plane WJLZ. (Circularly and plane polarized lights are 
obvious special cases.) The signal is said to be unpolarized when the 
tip of E{t) moves "rapidly and erratically" in 7r. To explicate this 
interesting but imprecise idea Wiener took an orthonormal basis 
B = {x, y} in 7T, and represented the light signal relative to B by the 
2-ple signal f s = (£*, Ey). fB will of course have a 2 X2 matricial co-
variance function <J>B. Wiener defined the light signal to be com­
pletely unpolarized if for some basis B in 7r, 

(4.5) $B(t) « <t>(l)I, * G ( - » , « ) . 

For any other orthonormal basis £>' in IT we have obviously 

**'(/) = U$D(t)U* 

where U is an orthogonal matrix. Hence light is completely unpolar­
ized, if and only if the equation (4.5) holds for all orthonormal bases 
B in 7T. Obviously the spectral distribution (or coherency) matrix for 
such a signal will take the form S(*)I in any basis B. 

On the other hand, for elliptically polarized monochromatic light 
of frequency co, we find that relative to the orthonormal basis formed 
by the principal axes of the ellipse 

18 Crudely expressed by the statement "two candles are twice as bright as one." 
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/*(/) = (a cos (œt + a), b sin(co/ + a)), 

i fa2 cos œt — ab sin œtl 
z Laô sin œt b2 cos wU 

This <5>B cannot be diagonalised by a (real) rotation of coordinate 
axes. Wiener proved that any partially polarized monochromatic 
signal is decomposable into a completely unpolarized signal and an 
elliptically polarized one. He also discussed the idea of "degree of 
polarization" and the structure of the group of optical transforma­
tions [GHA, §9]. 

Wiener's ideas have found a place in standard works on optics, 
e.g. in Chapter X in Principles of optics by M. Born and J. Wolf. 
See also §2 in the paper Fluctuations of light beams by L. Mandel in 
Progress in Optics, Vol. II . His ideas appear in such works in a garb 
which may seem strange to mathematical readers. 

5. Signals with absolutely continuous spectra defined by random 
processes. In [GHA, §§11-13] Wiener gave examples to show that 
signals in S' can have spectra of all possible types: saltus, singular, or 
absolutely continuous. Two examples for the last type are derived 
from stochastic processes, and are especially interesting in pointing 
to later developments. In our comments we have simplified Wiener's 
discussion. 

EXAMPLE 1 [GHA, §12]. Let fk be the feth Rademacher function on 
[0, l ] . 1 4 After Borel we know that the fk form an independent family 
of variâtes on ([0, l ] , (B, Leb.), where (B is the family of Borel subsets 
of [0, l ] . Consequently the bisequence 

(fn)n oo = ( * • • , U, ?4, f2, ?1, h, H, ' • • ) 

where rn =r2(i_W) or f2n-i according as n ^ 0 or n ^ 1, is an independent, 
stationary, discrete parameter SP. In essence, Wiener built from 
this a continuous parameter SP x(>, •) over ([0, l ] , (B, Leb.), viz. 

CO 

(5.1) *(*,«) = Z Xj„(t)rk(oc), t G ( - * , » ) , « G [0, 1] 

where Jfc== [fe —1/2, fe + 1/2).16 He showed that for almost all ce, the 
signal or path x(-, a) is in S', <£«=<£ and S a = S, where <j> is the tri­
angular function 

14 I.e., ?k(ot) = l-2dk(a), 0 < a < l , k>l, where dk(a) is the fcth digit in the 
binary expansion of a. 

16 Xj denotes the indicator function of / . Actually Wiener took Jk~ [kt &-H), 
but our choice of Jk is a little nicer. 
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\o, | / | > l 

and S is absolutely continuous on ( — <*>, oo) with 

, / / 2 \ 1 — cos M 
(5.2) J'C») = V(2T) I *,/«) I2 = / j / ( ; ) ^— • 

To understand this example better, let £(A) = ]C*eA f& for any 
Borel subset A of (— oo, oo). Then £ is a measure with values in 
Z,2[0, 1] such that £(Ai), £(^2) are independent when Ai, A2 are dis­
joint—a so-called countably additive, independently scattered (c.a.i.s.) 
measure. In terms of £ we can rewrite (5.1) as an equation with sto­
chastic integrals: 

x [T_1/2.T+1/2)WK^) = I xj,(f r){(dr). 

The process #(- , •) is thus a (2-sided) moving average of the c.a.i.s. 
measure £. But since £ is concentrated on the set of integers, its vari­
ance-measure I £(•) 12 is not invariant under the translation group on 
(—00, 00). Hence the process #(• , •) is not stationary. Thus Wiener 
has exhibited a nonstationary SP almost all signals (i.e. sample-
functions) of which are "stationary" in the sense of belonging to S' 
and having the same covariance and spectral functions <j> and S. 

EXAMPLE 2 [GHA, §13]. The last example shows that the signal re­
sulting from "a haphazard sequence of positive and negative rec­
tangular impulses" almost always has the spectral density S' given 
in equation (5.2), but that such a signal cannot be derived from a 
stationary SP. With remarkable insight Wiener saw that to remedy 
this situation one has "to eliminate the equal spacing of the indi­
vidual impulses, to reduce the sequence of impulses to such an ir­
regularity as is found in the Brownian motion" (p. 213). To put it in 
contemporary terms, we must replace the discrete c.a.i.s. measure £ 
of Example 1 by the Brownian measure rj with values in L2[0, l ] 
(built from the increments of the BMSP) for which the spectrum is 
the entire real line (R and the variance measure |rç(-)|2 'ls Lebesgue 
and hence translation invariant. 

The replacement of £ by rj led Wiener to the consideration of the 
SP y(- , •) over ([0, l ] , (B, Leb.) denned by16 

16 We are unable to adhere to Wiener's notation. Our W is his û (p. 225), our 77 is 
the measure (set-function) induced by his point-function £, Our y(* , •) is his ƒ in 
(13.36). His £(/), f(t) should of course be written £(/, a)t ƒ(/, a), with /£ ( — «>, °°), 
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(5 .4) y(f, •) = [*W(t - r)V(dr), W E £ * ( - « > , oo). 
^ - 0 0 

By 5 J pages (pp. 226-231) of hard analysis in which a generalization 
of the Tauberian result (2.7) is used, he was able to show that 

almost every realization y(-, a) of the process y(', •) belongs to 
(5.5) S', and Sa is absolutely continuous on ( — oo, oo) with SJ 

= V(2T)\W(-)\*. 

The significance of this result and a short proof for it became appar­
ent only after Birkhoff proved the ergodic theorem and Paley and 
Wiener [92, §40] showed that there is a flow Tt} /£(R such that 

(5.6) {*(A)}(ZV0 = [*(A + {/})](«), A C <R, a £ [0, 1], 

and 7\ is measure preserving and ergodic on ([0, l ] , (B, Leb.). T* is 
referred to as the flow of Brownian motion or of white noise. Since it is 
Lebesgue measure-preserving, the process y(-, •) is a strictly station­
ary moving average; in fact 

(5.7) y(f + r9a) = y(t, 2 » . 

Hence its covariance function y and (absolutely continuous) spectral 
distribution F are given by 

(5.8) 7(0 = f W(/ - r ) F ( - r ) J r , F '( \) - V(27r) | TF(X) |2 , 

cf. Doob (20, p. 532 ff). Now consider a realization ;y(-, a) of the 
process y(*, •)• Since the IVflow is ergodic, therefore by BirkhofFs 
Theorem for almost all a 

1 rT 

<k«0) = lim I y{t-\-T,a)-y{T,a)d,T 

1 rT 

= lim — I y(/, r T a ) - y ( 0 , 7 » < f r by (5.7) 

= I y(f,a)-y(09*)da = T ( 0 -
J o 

Hence by (5.8) for almost all a, S«' = F ' = V(2x) | W( •) |2 . 

«E [0, 1 ]. Wiener uses £, ƒ to refer sometimes to the random variable and sometimes to 
the signal. In place of our (5.4) he has (13.36) 

y(t, a) - f"„ tfr, a)dW(t + r). 

With his additional assumptions on W this equation reduces essentially to (5.4) on 
integrating by parts. But the last integral has filter theoretic significance, cf. §23 be­
low. 
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We see from this that although the flow Tt is not mentioned in 
[GHA], Wiener's 5 | page proof of (5.5) was in effect a direct proof 
of the existence (a.e.) of time averages for this flow—a remarkable 
analytic feat. 

I I . ASSIMILATION AND CONSOLIDATION (1930-1940) 
Wiener did some of his best mathematical work during the thirties. 

But as far as research in prediction and filter theory is concerned, the 
period was primarily a preparatory one in which he consolidated his 
intellectual position. Several strands are discernible in the mathe­
matical activity of this period, which had a profound effect on 
Wiener's later work, and which therefore call for comment. As before 
we shall eschew strict chronology. 

6. Theory of stochastic processes. First we must mention the 
epoch-making contribution of Kolmogorov (37) in setting up the 
theory of stochastic processes on a sound footing. The basic concepts 
of random variate, conditional probabilities and expectations were 
cleared up. Wiener used these ideas later in his nonlinear prediction. 
Kolmogorov's treatment rested on the construction of a probability 
measure in an infinite dimensional product space, starting from a 
properly indexed hierarchy of marginally related probability spaces— 
a "stochastic family" in the sense of Bochner (6). A precursor of 
this general Kolmogorov measure was of course the Wiener measure 
in the space of continuous functions. Wiener was the pioneer, but the 
Kolmogorov systematization was a boon to all workers in the field. 

Next came the formalization and study of the concept of a stationary 
SP due to Khinchine, Cramer, and others. We have already referred 
to the work of Bochner and Cramer on the Fourier-Stieltjes repre-
sentability of continuous positive definite functions on (— oo, oo) 
(§2). In 1934 Khinchine (36) showed that a weakly stationary SP has 
a spectral distribution function, and around 1940 Kolmogorov, Cramer 
and Loeve (38), (12), (44) showed that such a process admits a 
"spectral representation." Discrete-parameter and multivariate ex­
tensions of these results were made by H. Wold (66) and Cramer (12). 
All these contributions were to play an important part in Wiener's 
later work. 

We must next refer to von Neumann's spectral theorem for unitary 
operators on Hubert space and Stone's celebrated extension of this 
to one-parameter unitary groups. As Kolmogorov (38), (40) observed 
around 1940 these theorems provide an extremely elegant and uni­
fied treatment of the spectral theory of weakly stationary SP's. 
Kolmogorov and Karhunen (35) showed that associated with every 
weakly stationary SP (ƒ*, — oo<j<oo) is a unitary group (Ut, 



WIENER'S CONTRIBUTIONS 87 

— oo <t< oo) such that ƒ*= Ut(fo). Here t runs over the set of integers 
or real numbers according as time is discrete or continuous. Assume 
that time is continuous, and let E be the spectral measure of the 
unitary group: 

- 0 0 

Then17 

F(\) = V(2TT) I E ( - co, X]/o i2, à - £ ( - « , X)/o 

give respectively the spectral distribution F of (ƒ*, —oo</<oo) 
and the associated process (£\, — o o < \ < o o ) of orthogonal incre­
ments; thus 

V ( ^ ) ^ - o o J - o o 

Similar expressions are available in the discrete case. The results of 
Khinchine and Cramer thus become easy corollaries of Stone's Theo­
rem, and the study of stationary SP's is reduced to that of stationary 
curves or stationary sequences in Hubert space. 

As Kakutani (32) remarks Wiener did not immediately avail him­
self of these immense simplifications. [TS] would have been easier 
on mathematical readers had he done so, though perhaps to engi­
neers it might have been an even greater "yellow peril." However, 
Wiener adopted the Hilbertian approach in his later papers under the 
stimulus of his younger collaborators. 

7. Ergodic theory. Stone's Theorem was destined to influence 
Wiener's work in yet another way. I t suggested to Koopman the 
possibility of studying the asymptotic behavior of dynamical sys­
tems, governed by measure-preserving flows on a phase space (£2, 
(E, P ) , by means of the spectral resolution and infinitesimal generator 
of the induced unitary group on L2(Q, CB, P ) . This led to the proof of 
the ergodic theorems of von Neumann, Birkhoff, and others in 1931. 

It seems tha t a t first Wiener regarded these theorems merely as 
useful tools to deal with his time averages. But under the influence 
of E. Hopf and by the natural evolution of his own thought he soon 
came to regard the Birkhoff theorem as a mighty beacon which made 
possible the rigorous construction of statistical mechanics as envis­
aged by J. W. Gibbs. The fact that ergodicity has to be postulated in 
order to go from time-averages to the expectations and other well-
known averages of probability theory never bothered Wiener, for his 

17 The V(27r) in the expression for F is in keeping with the conventions adopted 
for the spectra of signals in I above. In [185], [186] 2ir is used instead of V(2ir). 
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scientific philosophy permitted the free creation of bold and ideal 
hypotheses. In 1938-1939 Wiener gave a unified treatment of differ­
ent versions of the ergodic theorem and extended them to abelian 
groups with several generators [117], [108], [128]. 

8. Hardy class functions. In 1934 Paley and Wiener proved that 
/ G i 2 ( — °°, °°) is the boundary value of a function ƒ+ in the Hardy 
class jff2 on the upper half plane, if and only if its direct Fourier-
Plancherel transform ƒ vanishes on ( — oo, 0), [92, p. 8] . They also 
showed tha t the n.a.s.c. tha t a function 0 ^ 0 a.e. on (— oo, oo) and 
in Li(— oo, oo) be expressible in the form <j> = | / | 2 a.e., where ƒ is as 
just described, is that {log <f>(\) } / ( l + X 2 ) G L i ( - oo, oo), [92, pp. 
16-17]. Both results play a central role in the theory of filters. In 
1935 came R. Nevanlinna's book (57), in which the earlier work of 
F. Riesz, Nevanlinna, and Szegö on the canonical factorization of 
functions in the Hardy classes on the disc appeared as an elegant and 
coherent theory. Initially Wiener did not feel much need for this 
powerful theory in his work on prediction. But as he delved deeper 
into the field, he had to appeal to it. 

9. The Hopf-Wiener integral equation. Wiener's interest in inte­
gral equations in which the integral is a one-sided convolution was 
aroused by his colleague E. Hopf. The general H.W. equation of the 
second kind with unknown ƒ is 

K(t - x)f(x)ix = g(f), t à 0, 
0 

the corresponding equation of the first kind (encountered in predic­
tion and filtering) being 

/

» 00 

K(t ~ *)f(*)dx = g(t), t è 0. 
o 

Wiener was struck by this equation. In [177, p. 143] he writes: 

The equations for radiation equilibrium in the stars belong to a type now known 
by Eberhard Hopf s name and mine. They are closely related to other equations 
which arise when two different physical regimes are joined across a sharp edge or a 
boundary, as for example in the atomic bomb, which is essentially the model of a star 
in which the surface of the bomb marks the change between an inner regime and an 
outer regime; . . . 

From my point of view, the most striking use of Hopf-Wiener equations is to be 
found where the boundary between the two regimes is in time and not in space. One 
regime represents the state of the world up to a given time and the other regime the 
state after that time. This is the precisely appropriate tool for certain aspects of the 
theory of prediction, in which a knowledge of the past is used to determine the future. 

As we shall see, this fascination with the H.W. equation had the 
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interesting effect of leading Wiener to a treatment of prediction, 
which was at once more limited theoretically and more fruitful prac­
tically than that found independently by Kolmogorov (40) in 1941. 
In Kolmogorov's work the H.W. equation does not occur. 

I I I . NONLINEAR PREDICTION 

10. On predictability in semi-exact sciences. In fields such as 
meteorology the enormity of free coordinates, our ignorance of im­
portant factors and the sparseness of our data preclude us from estab­
lishing and solving strict dynamical equations. Even so we are able 
to make predictions. How are we to account for predicability in such 
"semi-exact" fields? Wiener's position on this important question and 
on the problem of effecting such prediction is stated in the essay 
[l70]. This appeared in 1954 after much of his specialized work in 
prediction had been done. But on account of its comprehensive and 
thought-provoking nature we shall comment on its now, and then 
turn to specialized problems in prediction.18 

Let £2 be the set of signals pertaining to the field in question, e.g., 
each w £ Q may be the record of temperatures at different times (dis­
crete or continuous) a t a place Pw . Assume that time is continuous, 
so tha t each co is a function on ( — co, co ), and that t = 0 represents 
the present moment. Wiener held that while we cannot in general 
forecast the future value, co(5) say, of a particular signal co on the 
basis of our knowledge of the past, we can on this basis forecast the 
proportion p of the signals co in fl for which co(S)G5', say, S being 
a given (Borel) set of numbers. To allow for the possibility that Q is 
infinite, p has to be interpreted as a probability. Thus the first 
premiss of Wiener's theory is that there exists a probability measure P 
on a Borel algebra (B over the signal-space £2. Another premiss is that 
the signals are "not tied down to any specific origin in time" [TS, 
p. IS], i.e., tha t Ö is closed under translations Th: { Th(u>)} (t) =co(£+&), 

t,/*G(— oo, co). 
Now let pt be the tth coordinate functional on Î2, i.e. pt(u>) =co(0, 

and let (B* be the Borel subalgebra of (B generated by the functions 
p81 s St. Consider a set A&C&t, t>0, such that 4 $ ( B 0 ; e.g. 
(10.1) A = {co: co(5) G [a, b\ &co(7) G [c, d]} G (B7. 

Notice tha t since I,i'1((B«) ~(&t+hi we have 
18 [l70] is couched in cryptic language. Some of the passages have to be read with 

considerable empathy. For instance, Wiener rightly emphasizes the central role of 
ergodicity in his theory (p. 249); but on p. 248, lines 6-8 and p. 250, 3rd paragraph, 
he gives the misleading impression that prediction can be carried out even when the 
set of moments accessible to observation is devoid of group structure. 
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T7(A) = W- « ( - 2 ) G [a, J] & «(0) G [<r, <*]} G «o. 

Without further hypotheses P(A) cannot be found from our observa­
tions as these extend only up to £ = 0. But assuming that P(B) can 
be found from observations for B<E<&o and that the translations Tn 
preserve P measure, we can find P{Ti(A)} from our observations 
and hence also P(A) = P { T?(A)} • 

Wiener invoked ergodicity to explain how P(B), JBG(B0 ,
 c a n be 

found from observations in the past. Assuming that the translations 
Th are ergodic, Birkhoff's theorem assures us that for almost all 
signals co 

lim — f°xB(Ttœ)dt « f xB(o>)P(da>) - P(B). 

If B = r7(i4) where 4 is as in (10.1), then f\xB(Tto))dt is the Lebesgue 
measure of the set 

{/: - r £ t £ 0&co(* - 2) G [a, » ]&«(# G [c, <*]}. 

This measure can, in principle, be found approximately from our 
record of the signal values o)(t) for / ^ 0 . Thus a third premiss of 
Wiener's theory is tha t the translations Th, •— OO </&< OO, form an 
ergodic, measure-preserving flow on (£2, (B, P ) . 

In short, Wiener's prediction theory is based on three postulates: 
(i) the signal space 0 is closed under all translations Th, (ii) there 
exists a probability measure P on a Borel algebra (B over Q, (iii) the 
translations Th, ~ o o < & < o o , form a P-measure preserving and 
ergodic flow. 

11. Nonlinear prediction (elementary standpoint). The next prob­
lem is to show how prediction is to be carried out on the basis of the 
postulates (i)-(iii) of §10. Now a probability space (fi, (B, P ) in which 
Q consists of signals, i.e. functions on (— oo, oo), and satisfies postu­
late (iii) of §10 is simply a stationary, ergodic SP in its "coordinate 
representation," cf. Doob (20, I §6, X §1). As Doob has emphasized 
such a representation is dispensable. Viewed from a coordinate-free 
standpoint, our problem is to carry out the best (nonlinear) prediction 
of a strictly stationary, ergodic SP. 

Wiener discussed this problem for real SP with discrete time in the 
joint paper [196] with the writer published in the Harald Cramer 
Volume. Adopting the RMS error criterion, which is standard in com­
munication theory and in physics, cf. [TS, p. 13], it is shown tha t 
for a real-valued strictly stationary SP (ƒ«)"«, over (0, (B, P) such 
tha t E(fn) = 0 the best prediction of ƒ„ with lead v is the conditional 
expectation E(fv\ (B0), where (B0 is the Borel subalgebra of (B spanned 
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by the fk for k^O. Assuming that f0 and therefore each fk is in 
Z,oo(0, (B, P ) , we show that E(fv\ (Bo) is the orthogonal projection of ƒ„ 
on the Z/2-closure of the linear algebra Ofc0 spanned by the ƒ&, fe^O, the 
so-called "nonlinear past of /o." Finally, with the additional assump­
tion that for distinct integers wi, • • • , nfl the spectra of the distribu­
tion functions of the g-variates (fnv • • • , fnq) have positive g-dimen-
sional Lebesgue measure, it is proved that 

E(J,\ (Bo) - Li.m. Qn{f0) A , • • • , / ^ . } 
n—»oo 

where tnn is a non-negative integer depending on n, and the Qn are 
real polynomials in mn + l variables, the coefficients of which are 
computable expressions of the moments of the SP. These moments 
can in principle be determined from time series data in the past on 
the basis of ergodicity. 

Thus, under rather natural restrictions the nonlinear prediction 
problem is solvable, and indeed reducible to a linear problem, viz. 
the determination of the orthogonal projection of/„on the "nonlinear 
past," i.e. on a well-defined subspace of the Hubert space L2(0, (B, P ) . 
Of course, the practical difficulties of carrying out this solution are 
enormous, cf. §12. 

12. Nonlinear prediction (advanced standpoint). The solution just 
outlined has the shortcoming of requiring the inversion of larger and 
larger matrices to get the different Qn. Wiener felt that a better ap­
proach to nonlinear prediction "required a deeper analysis of strictly 
stationary processes. In the linear case the corresponding analysis is 
that due to Wold and Kolmogorov. The problem now was to carry 
out a similar, bu t nonlinear, time-domain analysis of strictly station­
ary SP, and to follow this up with a characteristic functional analysis. 

Wiener seems to have begun efforts in this direction around 1953, 
being guided to some extent by his earlier work on homogeneous 
chaos [108]. In 1956 he worked on the problem with G. Kallianpur 
a t Calcutta. Their results appear in a technical report19 and also in 
extremely diffuse form, and unfortunately without reference to Kal­
lianpur, in the chapters entitled Coding and Decoding in Wiener's 
book [NPRT] published in 1958.20 We must now examine this com­
pelling theory, although it contains a lacuna as we shall see. 

19 Nonlinear prediction (with G. Kallianpur), Technical Report No. 1 (1956), 
Office of Naval Research, Cu-2-56-Nonr-266, (39)-CIRMIP, Project NR-047-015. 

20 The material also appears in a mimeographed write-up by E. J. Akutowicz of 
lectures given by Wiener at Massachusetts Institute of Technology after his return 
from India. This version differs from the Kallianpur-Wiener report (see footnote 19) 
in proof techniques but not in essential conception and results. 
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Wiener and Kallianpur consider a real-valued strictly stationary 
SP (ffc)-oo over (Œ, (B, P ) . For any set J of integers let <£/ be the Borel 
algebra spanned by ƒ,-, j £ J and 9v be the family of Borel sets in the 
(not necessarily finite-dimensional) Euclidean space (HJ, (R being the 
real number field.21 Introduce the abbreviations 

(Bn = CBjr, $n = £r, where / = {w, » — 1, • • • }. 

The (microscopic) conditional probability P(fö1(— °°> X]|(B_i) is a 
(B_i-measurable function on Q. Hence (cf. e.g. Dynkhin (21, 1.5)) 
there exists a SVmeasurable function G on (ftto,-i.-2,"-) s u c ] 1 ^ ^ for 

feach real X, G(X, •) is 3\_i-measurable and 

P(fi\~ « , X] | <B-0(«) = G(X, A ( « ) , ƒ-,(«), • • • ). 

Wiener's first hypothesis is that for almost all cu£S, 

(A) G(-,/-i(co),/_2(w), • • • ) w strictly increasing and continuous on (R. 

This condition entails, of course, that (B-i^CBo, i-e. that the SP 
C/n)-» is nondeter minis tic. Let 

(12.1) g0(«) = G(/o(co), /_i(co), ƒ_,(«), • • • ). 

Obviously the range of g0 is essentially contained in [0, l ] . I t can be 
shown that go is independent of /__i, /_2, • • • and is uniformly dis­
tributed. Letting $ be the (0, 1) normal distribution function on (R 
and ho=^~"1(go) it follows that fe0 is (0, 1) normally distributed and 
independent of /_ i , /_2, • • • , and 

feo(co) = #(/o(o>),/_i(«), • • • ), # = ^ o G . 

Defining 

(12.2) few(ü>) = &(fn(0>)3fn~.l(0>), • • • ) , " <*> < II < 00, 

it follows that (fen)** is an independent, (0, 1) normally distributed 
SP, and fen is (Bn-measurable and independent of /n-i, fn-2i • • • . We 
can also show that (Bn = (B(fe„, ƒ*, k<n). Since 

(i) fen w (0, 1) normally distributed, 

(12.3) (ii) fen is (&n-ineasurable and independent offn-i,fn-29 • • • , 

(Ui) <B» = (B(fen, /n-l, /n-2, • • • ), 

we are entitled to regard few as the "nth. innovation" of the SP 
(/n)-co. Wiener and Kallianpur thus established the existence of (non-

81 iFj is the Borel algebra spanned by all sets of the form Xj^jBj, where Bj are 
Borel subsets of (R. 
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linear) innovations for a stationary SP obeying the condition (A) of 
strong nondeterminism.22 

Wieners next objective was to seek hypotheses which would en­
sure tha t his original SP (fn)-«> be a nonlinear, one-sided moving-
average of his innovation SP : 

(12.4) fn = F(hn, /*„_!, • • • ), - oo < » < co. 

An easy generalization of 12.3(iii) is 

(12.5) (B« = (B(Zfn, Aii-l, ' ' • , *n-*-l, fn-k-2, ' • • ), », * è 1. 

Wiener and Kallianpur now impose their second hypothesis, viz. the 
SP (ƒ»)" » is purely nondeterministic, i.e. 

(B) (o-.* = fl (B-n = {void set, fi}. 

From (12.5) and (B) they conclude (letting k —» <*>) that (Bn = <£(&*, 
fc^sw), and thence (12.4). 

In 1959, about a year after the publication of [NPRT], M. Rosen­
blatt (63) gave an example in which the hypotheses (A) and (B) are 
fulfilled but (12.4) fails. The inference of (B„ = ©(&*, k^n) from (12.5) 
and (B) is thus incorrect. But once (12.4) is properly established (say 
by suitably strengthening (A) and (B), or by changing the definition 
of go) we would have a theory useful for prediction. Thus with ƒ& 
GI<2(Q, ®, P) and the RMS criterion we would get 

E(fn | (Bo) = ff (0, • • • 0, ho, /U , • • • ), ft ê 0. 
» times 

Once H is known our predictor would be determined. Indeed we 
could get from (12.4) any statistical parameter of the conditional 
distribution of fn relative to (B0, e.g. the median. 

13. Unsolved questions. Wiener has bequeathed to posterity the 
important problem of strengthening his hypotheses (A), (B), (§12) 
or of changing the definition (12.1) of go so as to ensure both (12.2) 
and (12.4). Also left to us is the extension of this theory to the con­
tinuous parameter case. Here the absence of an atomic time-unit 
makes the problem of defining nonlinear innovations extremely hard; 
obviously all we may expect are virtual or differential innovations. 

Also remaining on the agenda is the implementation of Wiener's 
idea expressed on the last page of his brilliant essay [170] of affecting 

22 Wiener and Kallianpur seem to have been unaware that their technique for de­
fining go is an interesting "infinite" adaptation of one used by P. Levi (43, Ch. VI) in 
deriving from a sequence (/n)i a sequence of independent uniformly distributed 
varieties gn such thatfn^Fnigu ' ' ' .£»)• 
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a nonlinear prediction of a (simple) SP by carrying out a linear pre­
diction of a suitably derived infinite dimensional SP. There also re­
mains the job of supplementing nonlinear, time-domain analysis by a 
characteristic functional analysis. 

IV. LINEAR PREDICTION THEORY 

14. The linear prediction and filtering problems. When the strictly 
stationary SP (/fc, — oo <k< oo), where k can be integral or real, is 
Gaussian with zero expectations and //bGZ^Œ, Œ, P)=3C, the best 
(nonlinear) predictor £(/„|(Bo), *>>0, considered in §11, turns out 
to be the orthogonal projection ƒ„ of ƒ„ on the (closed, linear) sub-
space SfTCo of 5C spanned by ƒ*, k ^ 0 . When (ƒ&)-«> is not Gaussian but 
merely stationary, ƒ„ provides the first, i.e. linear, approximation to 
the best prediction of ƒ„. On both counts the problem of finding the 
orthogonal projection of ƒ„ on £flX0 is important. This is the linear 
prediction problem with lead v, independently conceived and studied 
by Wiener and Kolmogorov. 

When the time-signals of our stationary SP (ƒ&, — oo <k< oo) are 
contaminated messages we may at the linear level assume that ƒ*> 
=fl+fl, where the variâtes fl, fl represent the (pure) message and 
(pure) noise, respectively. Our problem is to find the best linear 
approximation to the message-variate fl in terms of the signal vari­
âtes fk, fe^O, i.e. the orthogonal projection Jl of fl on the subspace 3TC0 

spanned by ƒ&, fe^O. This is the linear filtering problem (with lead or 
lag v), also originally conceived by Wiener. 

How Wiener was drawn to these problems by his involvement with 
antiaircraft fire control and noise filtration in radar during the war, 
and how his mathematical background fitted him ideally for this task 
are recounted in his [204], [177], [TS]. His work in this field falls 
rather naturally into two periods. The first, 1940-1943, culminated in 
his [TS], which was completed in early 1942 but appeared in declassi­
fied form only in 1949. The second period, 1949-1959, began with his 
addresses [143], [156] to the CNRS in Paris, and the International 
Congress of Mathematicians a t Harvard, and ended with his papers 
on multivariate prediction. 

During the first period Wiener was interested chiefly in getting 
autoregressive integral or series representations for the predictor and 
filter. He used variational techniques and solved the resulting Hopf-
Wiener type integral equations. He accomplished all this without the 
use of too much theory by operating at what Yaglom [71, p. vii] has 
aptly called "a heuristic level of rigor." Some of the problems he 
tackled were formidable, but his work in this period lacked the 
theoretical strength and completeness of tha t of Kolmogorov (40). 
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On the other hand during the second period Wiener adopted a more 
theoretical approach. He undertook time-domain and spectral analy­
sis, leaning more and more on abstract theory, especially Hilbert 
spaces. 

IS. Linear prediction and filtering (first period). Despite its hard 
mathematical content, which earned it the nickname "the yellow 
peril," [TS] has had a wide influence in engineering circles. This 
stemmed from its wealth of engineering insights and its emphasis on 
the quick solution of engineering problems without much fuss over 
rigor. The urgencies of war as well as Wiener's long-standing fascina­
tion with such problems and the functional equations to which they 
led had much to do with this atti tude. As there is still some doubt as 
to the locus standi of the prediction and filtering techniques used in 
[TS] we shall briefly review them here in the light of the current 
theory of stochastic processes. 

Consider a stationary, purely nondeterministic SP (ƒ*, t real), 
/<G^2(S, (B, P ) . As indicated in §10, we can estimate the covariances 
<j>(t) = (fty /o) from time-signal data in the past on the hypothesis of 
ergodicity, which Wiener freely made. Thus the covariance function 
$ is "known." Our problem is to find for a given 7&>0, the orthogonal 
projection fh of fh on SfTCo, the closed subspace spanned by ƒ*, / ^ 0 . 
Wiener studied this problem in the mathematically restrictive but 
practically important case in which ƒ/* is given by an autoregressive 
Stieltjes integral: 

(15.1) A= f°f-Jw(r) 

where w is of bounded variation on [0, <*>). (As yet, no nice necessary 
and sufficient criterion for the validity of such a representation of 
Jh is known.) Since fh—Jh J-/-*, 2^0 , we readily get on taking inner 
products 

(15.2) 4>(f + h) = I 4>(t - r)dw(r)y t à 0. 
Jo 

This is a Hopf-Wiener Stieltjes integral equation of the first kind, by 
solving which the "unknown" function w is to be found. Wiener 
arrived at this equation [TS, (2.021)] by a longer variational ap­
proach. 

To solve (15.2) let us proceed heuristically. We extend w to (— oo, 
oo ) by defining it to be zero on (— co, 0) and define 

**(/) = 00 + *)x[0|Co)(0> ~ oo < / < oo, 
(15.3) r* 

u(l) = 1 <£(/ - T)dw(r) - #*(/), - oo <t< oo. 
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Denoting as usual the indirect Fourier transform by a tilde, noting 
tha t $( \ ) = i7'(X), where F' is the spectral density of the SP, and 
letting 

(15.3') WÇK) = f e**dw(f), 

we get from (15.3) 

(15.4) ü(\) « F'(\)W(\) - f A(X), - oo < X < oo. 

Now Wiener knew that his hypothesis that the SP is nondeterrninistic, 
i.e. /fc€£9Tlo, entails the condition 

(15.5) {logF'(X)}/(l + X » ) e £ i ( - « > , co). 

(Actually the equivalence of (15.5) to nondeterminism was proved 
only later by Karhunen (35).) From (15.5) and the Paley-Wiener 
Theorem [92, pp. 16-17] 

(15.6) F'(>0 = I $(>0 |2 a.e. on ( -00 ,00 ) , 

where $ has a holomorphic extension to the upper half plane A+, this 
extension being in the Hardy class H2. One can choose a $ which is 
free from zeros in A+. Then l/<£ will be holomorphic on A+ and l/<£> on 
the lower half plane A_. Also since w = 0 on [0, 00) and 2(/ = 0 on 
(— 00, 0] , we see that ü and W have holomorphic extensions to A-, 
A+ respectively. Hence on dividing by <Ê> in (15.4) we find that 

*(\)TT(X) = [ # A ( X ) / £ ( X ) ] + 

where [ ] + denotes the operation of cutting off the negative fre­
quencies.23 I t easily follows that 

(IS. 7) WQO = r^r [#»<X)/*(X)]+ - -J-r- k«w<KX)]+. 
<£>(X) $(X) 

This yields W, from which w or a suitably normalized version of w 
can be retrieved by inversion : 

w(t) - w(0) = lim — I : W(\)d\. 
A-* «o 27T «/ —A iX 

The exact hypotheses needed to validate this heuristic solution 
have not been discovered. Wiener showed that it goes through in 
case the spectral density Ff is a rational function P/Q with deg P 
fgdeg Q. This case, though mathematically restrictive, is important 
in applications. 

« I . e . [ / 1 ^ ( 0 * ] + - / D
- *HWt. 
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The above-mentioned treatment of the prediction problem was in 
marked contrast to that of Kolmogorov which covered the entire 
field of prediction of discrete parameter univariate processes, first in 
the time-domain with heavy emphasis on the fundamental one-sided 
moving average representation discovered by Wold (66) in 1938, and 
then in the spectral domain by exploiting powerful theorems on 
Hardy class functions. Kolmogorov showed that there is an isomor­
phism between the time and spectral domains. I t may be shown 
that if we define W not by (15.3') but by (15.7), taking the * therein 
to be the optimal (or outer) function satisfying (15.6), then f h and W 
are isomorphs, cf. e.g. [186, 4.11]. Yaglom, Darlington and other 
workers interested in the engineering side have developed algorithms 
for computing the predictor in the frequency domain starting directly 
from this fact and without assuming the autoregressive representa­
tion (15.1) in the time-domain. The Hopf-Wiener equation (15.2) is 
thus avoided (68), (16). 

Wiener approached linear filtering in much the same spirit as linear 
prediction. Let ft =f]+j?, where ƒ*, ƒ? represent the pure message and 
pure noise, respectively. As before we assume as known the auto-
and cross-covariance functions <£, <j>\: 

*(0 = (fhfo), #i(0 = (/i /o)-

As in (15.1) Wiener assumed that for any real h, the projection jl 
of/i on the subspace 9fE0 spanned by ƒ*, t^O is given autoregressively: 

(15.1') ƒ£= ff-Jwir). 
Jo 

Instead of (15.2) he now gets the Hopf-Wiener type equation 

*(/ - r)dw(r)f t à 0, 
o 

cf. [TS, (3.20), (3.52)]. Keeping to our former notation except for 
using 0i instead of <j> in defining >£*(/), we get as before 

(15.7') W(\) = - i - [f »(X)/#(X)]+ = - J - [e-^x(X)/f(X)]+, 
<P(A) <P(X) 

where F\ is the cross-spectral distribution of the ƒ/- and ƒ*-processes. 
From (15.7') w can be retrieved under suitable assumptions. Wiener*s 
approach was again rather pragmatic. As in prediction one may show 
without recourse to (15.10 and (15.2') that the function Win (15.7') 
is the spectral isomorph of the filtration ƒ£. 
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16. Linear prediction and filtering (second period). As mentioned 
in §14, around 1949 Wiener began to veer towards a more theoretical 
approach to weakly stationary SP's. In his addresses [143, 156] he 
dealt with moving averages in the time-domain (unfortunately with­
out reference to Wold) and followed this by spectral analysis. This 
trend persists in the papers [172, 176] in which Hubert space tech­
niques are increasingly used. But Wiener's analysis was incomplete. 
For instance, the remote past and nonabsolutely continuous spectra 
were not considered. Indeed, so thorough had been Kolmogorov's 
treatment of univariate prediction in the discrete case (40) that there 
was little left to do. 

In [156, 176] Wiener also discussed the prediction of continuous 
parameter, weakly stationary processes. This aspect of his work is 
best broached by a quotation [176, p. 183]: "Let the unitary trans­
formation T~l carry f (a) into g(a) if and only if for all n 

ƒ " f(S-*a)ln(t)dt = ƒ ** giS-taVn^iOdt.» 

In this interesting but rather cryptic sentence the ln are Laguerre 
functions and (£' , t real) is a measure-preserving flow on ([0, l ] , 
Borel, Leb.). When deciphered the sentence reads: "Let T be the 
Cayley transform of i7, where iH is the infinitesimal generator of the 
unitary group (St, t real) induced by the S'-flow: St(f)=fo SK" I t 
seems that Wiener did not realise this; even so he took the important 
step of associating with his continuous parameter SP (St(f), t real) 
the discrete parameter SP (Tw(/), n = integer), and so bringing the 
discrete theory to bear on the continuous. But he did not pursue 
this fine idea systematically, and his work on the continuous case 
during this period is on the whole rather sketchy. 

In [143, 176] Wiener also considered linear filtering with discrete 
time. He employed moving averages and spectral theory to prove 
results obtained either heuristically or under restrictions in earlier 
work. 

17. Multivariate prediction. No sooner had Wiener tackled the 
prediction and filtering problems for univariate processes, he turned 
to the corresponding problems for g-variate processes (/*, t real), 
where each ft is a <?-ple vector (ƒ•()ƒ«! with fj

tÇzL2(Çl1 (B, P ) , and the 
Gram matrix (/«, £t) = [(ft, f{)\ =<[>($ — /) depends only on the differ­
ence s — t. In [TS, Ch. IV] he assumed, in keeping with his approach 
for the case q = 1, tha t the predictor ih has an autoregressive Stieltjes 
integral representation. He then got instead of the single Hopf-
Wiener equation (15.2) a system of q such equations in q unknowns 
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[TS, (4.105)]. This system yields on solution the first component of 
ƒ h- To get f h itself we must solve a system of q2 such equations in q2 

unknowns, i.e. a single matrix Hopf-Wiener equation 

ƒ 00 

<>(/ - r)dw(r) 
- o o 

where w is the (unknown) qXq matricial weighting. Wiener's treat­
ment of the solution of this equation was again largely heuristic. I t 
can be carried through only under rather severe restrictions on the 
process, which, however, are fulfilled in many cases of practical inter­
est. 

A more theoretical approach to multivariate prediction occurs in 
Wiener's address [156], and is amplified in the paper [172] dedicated 
to Plancherel. Wiener considered a discrete parameter, purely non-
deterministic, bivariate SP of full rank, i.e. one for which g = 2, the 
so-called remote past M-w is {o} and the 1-step prediction error 
matrix has rank 2. By alternating projections in Hubert space Wiener 
obtained expressions for the innovation vectors. But questions of 
existence and those of computation were not kept apart, and this de­
limited the work. Thus Wiener was able to show that such a process 
has a spectral density F ' and tha t F ' is factorizable: 

00 

(17.1) F ' = «ï><ï>*, a.e., O ^ S ^ G ^ C ) , 

where C is the unit circle {z: \z\ = 1} . But he was not quite able to 
show tha t the condition 

(17.2) l o g d e t F ' G £ i ( C ) 

suffices for such factorization.24 In [172] Wiener also discussed a 
similar factorization for unitary matrix-valued functions, but his proof 
is incorrect and the result itself is in doubt. 

The work done up to this point by Wiener and others had not 
cleared up the basic questions of g-variate prediction theory, and 
clearly pointed to the need for a systematic study of these questions 
unencumbered by algorithmic considerations. Wiener began this 
work in collaboration with the writer in 1955-1956 at Calcutta. This 
research [185, 186], deals with the general case first and only later 
with special cases.26 As the subject is rather technical we shall assume 
in what follows tha t the reader is familiar with the basic concepts. 

24 His argument fails when the angle between the past subspaces of the component 
processes is zero. 

26 [185] owes much to Zasuhin's brilliant Doklady note (72), which announced a 
chain of general results on g-variate processes. 
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[185] begins with the time-domain analysis of g-variate processes 
of rank p, 1 Sp S Q- Following Zasuhin p is defined to be the rank of the 
1-step prediction error Gram matrix 

G = (go, éo) = [(go, go)] 

where go~(gl)Ui *s t n e 0th innovation vector. The Wold or rather 
Wold-Zasuhin decomposition is established, and necessary and suffi­
cient criteria given for pure nondeterminism, i.e. for M_oo= {o}. The 
paper also contains spectral analysis. Perhaps the most fundamental 
result is the determinantal extension of the Szegö-Kolmogorov identity: 

1 r2* 
(17.3) log det G = — I log det F'(ei9)dd, 

2ir J o 
where F is the qXq matricial spectral distribution of the SP. This re­
sult, first stated by Whittle (65), is proved by exploiting theorems on 
the Hardy classes as well as the concavity of the functional log det 
on the space of qXq non-negative, hermitian matrices. (We get 
a generalized Jensen inequality.) From (17.3) it follows at once tha t 
(17.2) is the n.a.s.c. tha t p = g, i.e. tha t the SP be of full rank. We 
show next that when p = <z the absolutely continuous and nonab-
solutely continuous parts F0, F& of F are the spectral distributions 
of the purely nondeterministic part (un)üoo and the deterministic part 
(vn)üoo of the Wold-Zasuhin decomposition of (/n)üoo—the so-called 
concordance of Wold-Zasuhin and Lebesgue- Cramer decompositions. By 
appeal to Cramers criterion tha t a matrix-valued function be the 
spectral distribution of a SP (12), we also show that if F ' ^ 0 , 
F ' £ L i ( C ) and satisfies (17.2), then F ' admits a factorization of the 
form (17.1), where moreover the factor $ is optimal ("outer" in 
Beurling's terminology), i.e., 

1 r2v 

(17.4) Co à 0, log det C0 = — I log det Ff(ei$)d$.^ 
2TJO 

In [186] an isomorphism is established between the time and spec­
tral domains of a g-variate purely nondeterministic SP of full rank q. 
But the primary goal is the derivation of an algorithm for the linear 
prediction ip of ƒ„ with lag v. îv turns out to be the isomorph of the 
function Yp: 

(17.5) Yv(e
i0) = [e-*ie®(ei6)}o+®-l(eie) 

26 Some of these results were obtained independently by M. Rosenblatt, Helson 
and Lowdenslager, and lu. A. Rosanov. 
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where O is the unique function satisfying (17.1) and (17.4). The 
problem is therefore to find an algorithm for the computation of this 
"optimal factor" of F ' . In case g~ 1 

*(Z) = e X p { l / o
2 T ^ l o g n e ^ } , | . | < 1 . 

But for q>\ no such closed-form expression involving the log is 
available since matrix multiplication is noncommutative, and all one 
can hope for is some iterative procedure for finding <ï>. Our algorithm 
emerges when Wiener's approach for q = 2 based on alternating pro­
jections [172] is judiciously fused with a technique of noncommuta­
tive factorization used earlier by the writer (46). Under the assump­
tions \I<>Ff(ei0) ^X'l, 0<XgX' < oo, we show that 

(17.6) VG*- 1 = 1- M+ + (M+M)+ - {(M+M)+M}+ + • • • , 

where 
2 

M = F' -I 
X + X' 

and the subscript + denotes the operation of cutting off all but posi­
tive frequencies. For i, itself we obtain a mean-convergent auto-
regressive series 

(17.7) /, = S W ^ , 

where the EVk are finite sums of the Fourier coefficients of O""1 and «fc. 
A natural sequel to the foregoing study is that of purely nondeter-

ministic processes of degenerate rank: l ^ p < g . In this case F is 
absolutely continuous, 

00 

(17.8) det F ' » 0, a.e., F ; - «M>*, a.e., O ~ £) Cke
ki0 G U(C). 

What conditions must F ' satisfy in order that such a "degenerate rank" 
factorization be possible? In [197] Wiener and the writer gave a com­
plete answer for the bivariate case, q = 2: with F = [F^], 

(17 9) l o 8 F Î ' e L l ^ * - l " 2 , 
Fji/Fu = radial limit ofabeschranktariigefunction, j ^ i. 

At about the same time Wiener wrote a paper [194] with Akutowicz 
in which the "full rank" factorization theorem of [185] is reproved 
ab initio. The difficulty which Wiener had encountered in his earlier 
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work [172, 176] is avoided by abandoning the method of alternating 
projections in favor of a technique suggested by the time-domain 
analysis of g-variate processes given in [185]. 

18. The continuation of Wiener's work on prediction. The work of 
Kolmogorov and Wiener on prediction has had widespread influence. 
Activity in the field has been especially vigorous from the time when 
Wiener's work on multivariate prediction and that of Rosanov (60) 
in Russian appeared. In the following brief account of these develop­
ments we shall only mention work closely related to Wiener's. Our 
order will be logical rather than chronological. 

During 1947-1950 Karhunen (35) and Hanner (26) extended 
Kolmogorov's work to univariate continuous parameter processes, 
and thereby settled important questions which Wiener had bypassed 
in his early, heuristic attacks.27 But the techniques used were some­
what ad hoc in nature. Now (cf. §16) Wiener [176] had suggested the 
possibility of associating with the weakly stationary, continuous 
parameter SP (£/<ƒ, / real) the weakly stationary, discrete parameter 
SP (Vnf, n = integer), where F i s the Cayley transform of H, iHbeing 
the infinitesimal generator of the unitary group ( Ut, t real). J. Robert­
son and the writer (55) showed that such association results in a 
coherent and simple development of the entire theory. In particular, 
the troublesome process of orthogonal increments (&, / real), the 
differentials of which are the (virtual) innovations of the frprocess, 
is easily obtained. 

On the engineering side, Bode and Shannon (7) simplified Wiener's 
early version of prediction and filtering [TS] using circuit theory 
concepts. The circuit theory point of view also led Darlington (16) 
to a simpler form of the theory adaptable to applications exemplify­
ing rational spectra. Zadeh and Ragazinni (72) modified the Wiener 
theory to cover the case in which the known data is confined to a 
bounded time-interval in the past. Yaglom (68) put some of this work 
on a rigorous footing. J. Chover (9), (10) made an interesting mathe­
matical'analysis of the case in which such prediction in terms of a 
bounded interval is representable autoregressively by a Stieltjes 
integral, cf. (15.1). Dolph and Woodbury (18) studied the predictor 
and filter, again on the basis of a bounded time-interval, for SP's , 
the signals of which are generated by driving linear differential sys­
tems by white noise. Kalman and Bucy (34) also considered this 
problem, but from the general standpoint of stochastic control theory. 

To turn to the g-variate theory, the isomorphism between the time 

27 The state of the subject at this point (1950) is well exposed in Doob's book (20, 
Ch.XII). 
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and spectral domains established in [186] under the hypothesis of 
full rank and pure nondeterminism was obtained without restriction 
by M. Rosenberg (59) and Rosanov (62'). Research in the field was 
thereby freed from reliance on unnecessary hypotheses. Matveev (56) 
studied degenerate rank factorizations of matrix-valued functions for 
any g ^ l . His condition for the factorization (17.8) with rank &=p, 
l<^p<g is a direct generalization of the condition (17.9) proved in 
[197] for g = 2, p = 1. Somewhat less tractable conditions for degener­
ate rank factorization were found by Helson and Lowdenslager (28). 
The writer (47) showed that the concordance of the Wold-Zasuhin and 
Lebesgue-Cramer decompositions, established in [185] in the full rank 
case, breaks down when l^p<q. For the case q = 2, p = l, he gave 
necessary and sufficient conditions for the prevalence of concordance, 
which J. Robertson (58) generalized to q à 1, 1 éf> <<Z> by first proving 
an elegant result on the ranges of the matrices F£ (eid), FJ (eid), Fl (eid), 
where the xn-process is the sum of orthogonally related processes yn 

and zw. Some of Robertson's results were duplicated independently 
in China by Jang Ze-pei (31). 

On the computational side, the writer (48) showed that the 
algorithm (17.6) for finding the optimal factor <£ of F ' satisfying 
(17.1) and (17.4) extends to the case in which the reciprocal matrix 
(F')""1 and the quotient X'(-)A(0 of the largest to the smallest eigen­
value of F ' are in Li(C). He also showed that the autoregressive series 
(17.7) for the predictor is available under the weak hypotheses 
F,GLoo(C), (FO^GLiCC). Yaglom (70) developed algorithms for 
prediction for continuous parameter g-variate processes with ra­
tional spectra. 

Gangoli (24) developed a g-variate prediction theory valid for 
q= oo. He defined a SP as a bisequence of bounded linear operators 
Fn from Hilbert spaces 5C to 3C', where dim X = g, and showed that 
many of the definitions, result and proofs given in [185] carry over 
to the case q = oo. Gangoli also considered the factorization W' =$$*, 
where W' is a function on the unit circle C, the values of which are 
non-negative, hermitian operators on 3C to 3C, and $ has a one-sided 
Fourier development. This factorization had been treated earlier by 
Devinatz (17), who showed that a sufficient condition is that log X(-) 
£Li(C)> where \(ei6) is the g.l.b. of the spectrum of W'(eie), and by 
Lax (42), who showed that the literal generalization of the Szegö 
condition, log W'<E.L\(C), is inadequate. 

Among the more distant work influenced by the contributions of 
Wiener and Kolmogorov we should mention (i) the extension of pre­
diction theory to stationary random distributions due to K. Ito 
(30), Rosanov (61), and Balagangadharan (1); (ii) Cramer's exten-
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sion of prediction theory to nonstationary processes in both discrete 
and continuous time (13, 14, 15). (iii) the firm initiation of a theory 
of linear least squares interpolation due to Yaglom and Rosanov 
(39, 67, 62). 

All in all, the pioneering work of Wiener and Kolmogorov in pre­
diction has stimulated much valuable mathematical activity in many 
lands. 

19. The ramifications of prediction theory. It has become increas­
ingly clear tha t linear prediction theory is a part of the general theory 
of one-parameter semi-groups of isometries on a Hubert space. For 
instance, the Wold Decomposition of a weakly stationary, discrete 
parameter SP (Unf)lw follows at once from the general equation, cf. 
Halmos (25), 

(19.1) OC = H Vn(3C) + è Vk(RX) 

which holds for any Hubert space 3C and any isometry V on 3C onto 
jRC3C. (Just take 5C to be the present and past subspace 9TCo of the 
given SP and V to be the restriction of U* to Sfïlo.) The general theory 
of isometric semi-groups also embraces parts of functional analysis 
such as the theory of shifts, the Hardy class functions, etc. For in­
stance, Beurling's Theorem (3, IV) on shift-invariant subspaces of 
the Hardy class iJ2 also follows from (19.1) when 5C and V are prop­
erly chosen. 

Now many of the ideas and techniques suggested by prediction 
theory have proved useful in these related areas, and so the light 
emanating from Wiener's work on prediction has reached well be­
yond the confines of prediction theory proper. As examples of such 
distant ramifications of prediction theory we may mention (i) the 
deduction of the optimal-residual28 factorization of a function ƒ in 
the Hardy class H2 from the Wold Decomposition of the SP (e~***jQ*L _ * 
(49); (ii) Lax's vectorial extension of Beurling's Theorem on shift-
invariant subspaces using techniques suggested by g-variate predic­
tion theory, (41); (iii) the canonical factorization of matrix-valued 
functions in the Hardy class jEf2 obtained by the writer, again em­
ploying the ideas of g-variate theory, (49-53) ; (iv) the writer's enun­
ciation and proof of the analogue of (19.1) for a continuous parameter 
semi-group (St, t^O) of isometries, in which he was guided by the 
situation in continuous time processes, (54); (v) the Hardy class, 
theory on the torus due to Helson and Lowdenslager (27). Some of 
the recent work of Halmos and his collaborators, of Lowdenslager, 

88 Outer-inner, in Beurling's terminology. 
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Helson and others on the invariant subspace problem also falls into 
this category. 

There are other regions of functional analysis where the viewpoint 
of prediction theory might fructify. An instance is the study of the 
operator identities of G. Baxter (2). Some of these identities were 
actually encountered in [186] in the derivation of the algorithm 
(17.6). Another instance is the theory of stationarity and prediction 
for individual time signals and certain associated algebras due to 
H. Furstenberg (22). 

V. FILTER THEORY 

20. Linear filters. Realizability. The only linear filters which 
Wiener considered at length were time-invariant ones which possess 
a differential weighting K in the time domain, i.e. filters for which the 
response g to an input signal ƒ is given by 

(20.1) g(t) = f "dK(t - T)/(T) = (dK*f)(i), t G ( - °°, » ) 
« ^ - o o 

where K is a function of bounded variation on ( — <*>, oo ) and * de­
notes convolution. An especially important subclass of such filters is 
tha t for which K is absolutely continuous on (—<», <*>). Writing 
Kf = — w, w e then have 

(20.2) g(f) = f °V(/ ~ r)f(r)dr = (W*f)(t), ' £ ( - • , «>) 
J -00 

where W G £ i ( - < » , «>). We shall refer to (20.1) and (20.2) as the 
dK* and W* filters. 

To "know" the filters is to know the weightings K or W. A major 
problem of linear filter theory is to determine these weightings from 
a comparative analysis of the (observable) input and output signals 
ƒ and g. Wiener made several contributions to this problem, cf. §§22, 
23 below. 

All physically realizable filters are causal (or retrospective or non-
anticipative) in the sense that for each t 

/ i = f2 on (~oo, / ) r=> gx = g2 on ( - o o , 0 -

Obviously the filters dK*, W* will be causal if and only if i£ = 0 ~ W 
on ( - oo, 0). In this case (20.1), (20.2) reduce to 

(20.1') g(t) = (* dK(t - r)/(r), * € ( - » , «), 
J - o o 

(20.2') g(t) - ƒ W(/ - T)/(r)rfr, / € ( - - , « ) • 
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One of Wiener's first contributions was to give the spectral necessary 
and sufficient condition for causality of the filter PF*, viz. 

(20.3) f°°{|log|lF(A)| | / (1 + X2)}rfX < oo, 
•/-co 

where ffî is the indirect Fourier transform of W, cf. (1.1). This condi­
tion emerges from his joint work with Paley (§8), and engineers refer 
to it as the Paley-Wiener condition. 

In case the filter W* is causal, i.e. W=0 on ( — oo, 0), W has a 
(unique) holomorphic extension to the upper half plane A+. This ex­
tension is in the Hardy class Hi on A+, and so admits a canonical 
optimal-residual ("outer-inner") factorization 

W(z) = *(*)¥(*), 2 £ A + 

where 

( 1 /•• X* + l log I W(\)\ ) 
(20.4) *(*) - e x p ^ — 7 y ]d\\, Z G A + 

I 7TZ J^oo X ~ Z 1 + X2 j 

and ̂  is itself factorable into a Blaschke product, a factor, ex-p(i(a+az)) 
(a^0 , a real), and an integral akin to (20.4) but with respect to a 
purely singular and nonpositive measure over (—oo, oo). In case 
ty(z) = 1, i.e. W~Q, the filter W* is said to be of minimum phase type. 
The weighting for a filter of this type is easier to retrieve from input-
output data than that of an arbitrary causal filter W*, cf. §21. 

In many cases of practical interest W is a rational function (cf. 
§15). A second major problem in filter theory is that of design or 
synthesis: given a rational function W satisfying (20.3), to synthesize 
from so-called lumped, passive, electrical elements (resistances, 
capacitances, inductances) the filter W*. The problem of design is 
fairly well understood when the filter is linear. Wiener made some 
compelling suggestions as to its solution for nonlinear filters (§28). 

21. Periodic and pulse inputs. To understand Wiener's work on 
filter inputs (§§22-25) we must review briefly the prior theory of 
purely periodic (in particular, sinusoidal) inputs and pulse inputs. 

For the filter W* we see at once that if f(t) = e-*x', then 

(21.1) g(0 = V(2ir)W(\)e-iU = V(2ir)W(X)f(t). 

Thus the response to a sinusoidal input is a sinusoidal signal of the 
same frequency —X but with a complex amplitude V(2w)W(X). The 
function which gives the amplitude modification, viz. \/(27r)W^, is 
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called the frequency response function of the filter.29 By successively 
plugging in sinusoidal inputs of different frequencies —X into the filter 
and observing the output amplitudes \/(27r)W(\), we can get W and 
thence W. 

Again for the filter W*, since WÇzLi( — oo, <x>), it follows that if ƒ 
is in L2(— oo, oo), i.e., ƒ is an energetic but powerless pulse, then 
g = W*f is also in L2( — °°, °° ) ; moreover, 

(21.2) g(X) - V (2TT)^ (X) / (X) . 

Thus W can be retrieved from a knowledge of the Fourier-Plancherel 
transforms ƒ, g of the input and output signal. Now cf. (1.1), (4.1), 

| ƒ (X) |2 = the energy density of f at frequency —X, 

| g(X) |2 = the energy density of g at frequency —X, 

and if Tt is the translation operator, then 

(21.4) f *e«\Ttg,f)dt = I(X)/(X) = V(2x)H^(X) | f(\) |». 
« ^ - 0 0 

Since the functions ƒ, g can be measured, the "output-input covari-
ances" (Ttg, ƒ) for different lags / can be computed digitally, or 
analogically (by apparatus involving delay devices, square law recti­
fiers and integrators). Hence in principle we can find the cross output-
input energy density (21.4). On dividing this by the input energy 
density (21.3) which again is computable from the observed signal/ , 
we can find W(K) from (21.4). 

In case the filter W* is causal and of minimum phase type, the 
(unique) extension of W in the upper half plane A+ is given (cf. 
(20.4)) by 

(1 f °° X s + 1 log \W(X)\ ) 
W(z) = e x p ^ - \ \ J dx\> *£ A+ 

(7T* J-oo X ~ Z 1 + X2 J 

(21.5) - exp — I log^— i i i - l L l i X , 
F L2ir»J- w \ ~ z 1 + X2 Ö12TT | / ( X ) | 2 / J 

ze A+, by (21.2). 

Thus in principle W can be found merely from a knowledge of the in­
put and output energy densities (21.3) without recourse to the cross 

29 More specifically, for an electric filter it is called the impedance or admittance or 
voltage ratiof according as f—i & g = v, orf~v & g=*i, or /=i / & g~vt where * is the 
current and v is the voltage. We have defined this function to be -\Z(2w)W (and not 
y/(2ir)W) in order that it be holomorphic in the upper (and not lower) half plane for a 
causal filter. 
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energy density (21.4). This is one of the merits of minimum phase 
filters. 

A fictitious, limiting case of a pulse ƒ as the support dwindles to a 
single point and the energy becomes infinite is the Dirac ô "function" 
supported at {0} and such that S(0) = oo. One assumes that f"„ \ô(t)\ dt 
= 1, f-oo\à(t) \2dt = oo, so that ô is an impact of "unit impulse" but 
infinite energy. Formally, the response of the filter W* to input S is 
seen to be W: 

(21.6) g(f) = (W*i)(f) = W(f), * £ ( - « > , » ) . 

g will have finite energy if PFGZ^—°°, oo), i.e. W£Li(— oo, oo) 
nL 2 (— °°, °°). In this case 

(21.7) the energy density of g ai frequency — X = | W(\) |2. 

The practical importance of (21.6) and (21.7) stems from the fact 
that as ƒ approaches 5, g approaches W. Since approximations to 8 are 
physically realizable by means of sharp, almost instantaneous im­
pacts, we can find good approximations to W by subjecting our filter 
to such impacts and measuring its response. 

22. Inputs of the class S. One of Wiener's main contributions to 
linear filter theory was to realize the importance of admitting as in­
puts arbitrary signals of the class S (§2) and to extend the theory of 
L2- and periodic signals (§21) to cover this more general case. His 
main theorem is tha t if 

(22.1) ^ ( 0 G I i ( - « , oo), ( 1 + \t\)W(t)eL2(-«>, * ) , 3 0 

then the response of the filter W* to a signal ƒ in S is a signal gGS' , 
and the spectral distributions Sf, S0 of ƒ, g are related by 

(22.2) S0(\) = 2TT f | W(u) \2dSf(u), X G ( - » , oo) 

[FI, Lemma 296, p. 173; Theorem 30, p. 178]. 
By a straightforward analysis Wiener showed that g £ S when 

ƒ £ § , but he had to appeal to the condition (2.8) of §2 on the "quad­
ratic variation of s" to prove that g is actually in S'. Latent in his 
work are results on the output-input covariance and spectral dis­
tribution 4>gf, Sc/'. 

**(') = (^*&)(0, *e ( -«> , «>), 
(22 3) r x 

Sgf(X) = V(2TT) W(u)dSs{u), XG ( - o o , oo). 
J -oo 

80 From which it follows readily that W and the two functions just mentioned are 
in fact in JLi( — oo f oo ) (~\L%( — oo, oo ) . 
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Let the input signal ƒ have an absolutely continuous spectral dis­
tribution Sf. I t then follows that the spectra Sgf, Sg are also absolutely 
continuous, and (22.3), (22.2) reduce to 

(22.4) Sgf(\) = V(27r)^(X)S;(\), ^(X) = 2TT| H (̂X) | ^ ( X ) . 

The first of these equations corresponds to (21.2). Corresponding to 
(21.3) we now have, cf. (4.2) et seq., 

6/(X)/'v/(27r) = the power density off at frequency —X. 

S0(X)/\/(2T) = the power density o f g at frequency — X. 

As in the case of signals/, g£L 2 (— °° » °°) (§21) ,we can find the out­
put-input covariance <t>0f(t) for different lags t from observed data 
either by digital computation or by analogical devices, and in prin­
ciple obtain the output-input power density Sgf(k). On dividing this 
by the input power-density S'f(\) we will get WÇK), cf. (22.4). In 
case the filter W* is causal and of minimum phase type, we can as in 
§21 retrieve W from a knowledge of the power densities (22.5) alone 
without recourse to the cross power density S'gf. 

We see tha t Wiener was able to obtain for filters W* a rather com­
plete extension of the classical theory of L2-inputs to S-inputs with 
absolutely continuous spectra. 

Corresponding to the fictitious ô signal of the L2-theory (§21) we 
now have the so-called unit white noise signal w characterized by the 
properties 

*•(/) = 5(/), Sw\\) = 1 / V ( 2 T ) , t, X G ( - «o, oo). 

Since Sw(<*>) — 5W( — 00) = 00, the signal w has infinite power. We 
may regard w as the fictitious limiting case of a signal ƒ in S with a 
flat spectral density, the support of which swells to fill up the entire 
interval (— «>, <*>). Formally, the response g of the filter W* to the 
input w satisfies 

(22.6) 4>gQ) - W(t), S'M = 0XX), ^(X) = V(2TT) | W(\) \\ 

On comparing this with (22.5) and (21.7) we can conclude tha t : 

If W satisfies (22.1), the power density function of the response 

(01 1\ °f ^e ft^er ^ * io ^ie un^ white noise input w is equal to the 
energy density function of its response to the input ô, i.e. to an 
impact of unit impulse. 

This is Wiener's result, being just a clearer rendition of his more 
cryptic formulation: uthe response of a linear resonator to a unit 



110 P. MASANI 

Brownian motion input has the same distribution of power in frequency 
that its response to a single instantaneous pulse will have as a distribu­
tion of energy in frequency" [TS, p. 50, GHA, p. 116]. We shall dis­
cuss its precise interpretation in §23. 

23. Brownian motion inputs. The pseudo-concepts of the impact 
signal S of infinite energy and of the white noise signal w of infinite 
power (§§21, 22) can be explicated in terms of "distributions" à la 
L. Schwartz. Integration by parts is an important tool in this ex­
plication. Such use of partial integration actually goes back to Wie­
ner's early work on Brownian motion [29]. In [GHA, §13] Wiener 
adopted this method to convert pseudo-assertions concerning the 
response of the filter W* to white noise into bona fide assertions about 
the response of the filter — dW* to a Brownian motion input. 

To explain Wiener's approach, let us first see how the pseudo-
assertion, (21.6) about the response of W* to 5, can be reinterpreted 
as a result concerning the response of —dW* to the Heaviside input 
Xto.oo). This input invokes from the filter — dW* the response 

«(0 = - fdrW(f - T) X [0 .M)(0 - ~ fdrW(t - r) = W(t). 
J -co ^ 0 

Here we assume tha t W is of bounded variation on ( — oo, oo) and is 
in L2(— oo, co), so tha t W(— oo) = 0 . Thus, the response of the filter 
—dW* to the Heaviside input xto.oo) is W. This statement would be the 
Wienerian explication of the pseudo-statement: the response of the 
filter W* to S is W. 

Wiener handled the white noise input in a similar way. Let 
{x(tf a ) , * G ( - o o , oo), a G [ 0 , 1)} be a (separable) BMSP. The 
response ga of the filter — dW* to a Brownian motion #(•, a) is given 
by 

(23.1) &(*) = - fdrWQ - r)-*(r, a) < € ( - « > , « ) . 

To ensure the existence of the last integral Wiener assumed [GHA, 
p. 225] that 

K(t) 
(23.2) W(t) = ; K of bounded variation on (— oo, oo ). 

V(l + '2) 
Obviously W C Z ^ — 0 0 , oo) and is itself of bounded variation on 
( - c o , oo). Since for almost all a, #(•, a) is continuous on (— oo, co) 
and \x(t> a) | g 2 \ / ( M log | * | ) , | t | large, the integral in (23.1) exists 
for almost all a. Now we can show by partial integration that there 
exists a fixed set iVC[0, l ] of zero Lebesgue measure such that for 
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each ££(— oo, oo), there is a version y(tt •) of the stochastic integral 

W(t - r)dx(r} •) 
- 0 0 

such tha t 

(23.4) y(lt a) « *,(/), a G [0, l ] - N, * G ( - c o , oo) « 

Let us observe that the stochastic integral (23.3) is precisely the 
one defined in (5.4) above. Our present y(t> •) is just a well chosen 
member of the equivalence class y(f, ) of (S.4). I t follows from (23.4), 
(22.5) and (5.5) that 

for almost all a the response of the filter —dW* to the Brownian 
(23.5) motions #(•, a) belongs to $' and has the (same) power density 

function | J Î ^ - - ) ! 2 . 

With Wiener we may consider (23.5) as the explication of the 
pseudo-statement that | W(— - ) | 2 is the power-density function of 
the response of the filter W* to the white noise input w. The pseudo 
statement (22.7) may likewise be given the precise rendering: 

If W satisfies (23.2), then the power density function of the 
0% fï\ fesPonse °f the filter —dW* to almost all Brownian motions is 

equal to the energy density function of its response to the Ream-
side input xio.oo). 

24. On harmonic analysis and linearity. From the preceding ac­
count it is apparent that harmonic analysis, classical and generalized, 
is a valuable tool in the study of time-invariant, linear filters. What, 
however, is the precise connection between harmonic analysis and 
linearity? Wiener had a clear understanding of this question, and 
this fact was crucial in the evolution of his ideas on nonlinear filters. 
Unfortunately his writings on the question are somewhat vague 
[204, pp. viii-x, 51-53, NPRT, p. 90]. We shall therefore make some 
clarifying remarks before proceeding to his work on nonlinear filters. 

Let G be any (additive) abelian Haar-measured group and ô be 
its character group. Let St be the translation operator induced by 
t<E.G on the space of complex-valued functions on G: 

{St(f)}(x)=f(x + t), t,xec. 
Let T be any linear operator on some subspace, e.g. LÏ.(G), of such 

81 The proof of (23.4) involves some delicate questions concerning measurability 
and the behavior of mobile sets of zero-measure, which Wiener seems to have slurred 
over. The writer is grateful to Professor T. Hida for assistance in settling these ques­
tions. 
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functions into itself, which commutes with each 5*. Then each char­
acter a of G is an eigenf unction of T: 

T(a) - Y (a)-a, 

where Y(a) = {T(a)} (0). I t follows that if ƒ has a "Fourier expan­
sion" in terms of the characters 

f(x) = X) WW, * G G, aj G Ö, 
y 

then 

y 

Hence T(J) can be found, if we know the "Fourier coefficients" Cj of ƒ 
and the "transfer function" (or "impedance") Y of T. In short, T is 
completely determined by the function Y on G, i.e. in filter terminol­
ogy, by JPS "response" to the "character inputs" a. "Harmonic anal­
ysis" thus appears as the natural tool for the study of linear operators 
which commute with the translations St. 

In the case of time-invariant linear filters, G and therefore ô are 
of course the additive group of real numbers, and the harmonic analy­
sis just alluded to becomes the classical harmonic analysis, or for 
robust, nonperiodic signals Wiener's generalized harmonic analysis, 
the character-inputs being sinusoidals. The transfer function Y be­
comes the frequency response function, i.e. the Fourier transform of 
the weighting function (§§20, 21). 

Next let T be a nonlinear operator on some subspace of complex-
valued functions on G, again commuting with the translations 5*. 
Then in general T is not determined by its action on the characters of 
G. Consequently "character-inputs" (i.e. sinusoidals) do not play 
any intrinsic role, and harmonic analysis ceases to be especially sig­
nificant. An important problem is to find the right substitutes: an 
appropriate probe, and an appropriate analysis of the response of the 
filter to such probes. With encouragement from Vannevar Bush, 
Wiener kept pondering on this question starting in the twenties. 

25. The probe for a nonlinear filter. Among Wiener's many state­
ments on the question of a probe, perhaps the most succinct and lucid 
is tha t occurring in his posthumously published book [211, p. 34- ] . 
He writes: 

The output of a transducer excited by a given input message is a message that 
depends at the same time on the input message and on the transducer itself. Under 
the most usual circumstances, a transducer is a mode of transforming messages, and 
our attention is drawn to the output message as a transformation of the input message. 
However, there are circumstances, and these chiefly arise when the input message 
carries a minimum of information, when we may conceive the information of the out-
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put message as arising chiefly from the transducer itself. No input message may be 
conceived as containing less information than the random flow of electrons constitut­
ing the shot effect. Thus the output of a transducer stimulated by a random shot 
effect may be conceived as a message embodying the action of the transducer. 

As a matter of fact, it embodies the action of the transducer for any possible input 
message. This is owing to the fact that over a finite time, there is a finite (though 
small) possibility that the shot effect will simulate any possible message within any 
given finite degree of accuracy. . . . That is, if we know how a transducer will respond 
to a shot-effect input, we know ipso facto how it will respond to any input. 

The belief tha t the nature of a filter can be found by studying its 
response to the random stimulation it receives from its environment— 
by psychoanalysis so-to-speak rather than by lobotomy—came rather 
early in Wiener's development. Thus in [GHA, p. 215] we read: 
"Imagine a resonator—say a sea-shell—struck by a purely chaotic se­
quence of acoustical impulses. I t will yield a response which still has 
a statistical element in it, but in which the selective properties of the 
resonator will have accentuated certain frequencies at the expense of 
others. " 

The shot effect of which Wiener speaks is to be regarded as the 
physical realization of a white noise signal w( •, a) or more accurately 
of a Brownian incrementary signal dx{-, a ) , (cf. §§22, 23). Our ex­
periences with the Taylor expansion of ordinary (nonlinear) functions 
on (Rn suggest tha t the response of our filter to a white noise signal 
should be expressible as a linear combination of multiple stochastic 
integrals 

K(s)dx(s, a), I I K(s, <r)dx(s, a)dx(cr, a), etc. 
- o o J - c o J - c o 

Wiener had already encountered such integrals in his researches on 
the "homogeneous chaos [108], [128], the motivation for which lay in 
ergodic theory and statistical mechanics. This work, he now found, 
had a direct bearing on the problem of nonlinear filters, cf. §26. 

26. Fourier-Hermite series of a function in L2[0,1], Wiener came 
upon this subject in 1938 in his at tempts to free ergodic theory from 
dependence on one-one point transformations [108]. In the course of 
this work he originated the idea of a homogeneous chaos over (Rn, i.e. 
a function 7? on (Bn® [0, l ] , ((Bn = the family of Borel subsets of (Rn) 
such that for each « E [0, l ] , F(', a) is finitely additive on <BW, and 
for each tf£(Rn, each S G ^ i , and each B(E(&n, the sets 

{a:F(B+{t},a)GS}> {a: F(B, a) e S} 

have the same Lebesgue measure [108, §2]. The current term for such 
an F is : stationary random measure. 
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The simplest example of a homogeneous chaos is the independently 
scattered Brownian measure over (R, defined on (Bi ® [0, 1 ] by extend­
ing 

F((a, b]> a) = x(b, a) — x(a9 a), a < b, 

where {*(/, a), *£(R, a G [ 0 , l ] } is the BMSP. This F is called a 
1-dimensional pure chaos [108, §6]. The multiple Wiener stochastic 
integrals yield derived chaoses) e.g. over (Rn we have the chaos 

F(B, a) = f • • I j£(0<fc(*i, a) • • • <&(/», a), 

due to jfir£Z,2((R
w); here t = (ti, * • • , *n). Next, let 

M <*) = r • • • r * (* - ^)^(ri> «) • • • ^(r«> «> 
and define 

F(B, a) = ƒ • • ' ƒ ƒ(*, «)*i • ' " *». 

Then i7 is called an nth-degree homogeneous polynomial chaos [108, 
§9]. Such considerations led Wiener to the idea of a hierarchy of 
mutually orthogonal subspaces of L2[0, l ] , [19, p. 37 et seq]. The 
following version of his theorem is an adaptation of Kakutani 's (33, 
Theorem 1): 

THEOREM 1. Let S0 = (&, and for n*zl9Snbe the subspace of symmetric 
functions in L2((ft

n). Then for each n*zO, there is a linear isometry 
Gn on Sn into L2[0, l ] such that 

00 

^«[0, 1] = Z Gn(Sn), Gm(Sm) J- Gn(Sn), M ^ », 
0 

Ut{Gn(Sn)} «Gn(8»), 

WA^Ö £7* is tóe unitary flow on L2 [0,1 ] induced by the flow of the BMSP, 
more accurately of white noise, on ([0, l ] , Borel, Leb.), cf. (5.6).32 

The expressions for Go and G\ are easily found: 

{Go(c)}(a) - c, cE <R, 

(26 1) f00 

{Gi(*)}(a)« I <l>(t)dx(t,a), « e i 2 ( ~ « , oo). 
J - o o 

Those for G2, G3 etc. are best understood from the remarkable rela-
82 Our Gn differs from Wiener's in that his Gn(Kn, «) is our y/(n\){Gn(Kn)}(a\ 

Kn being in Z,2((R
n). Our G* is Kakutani's Wn~l-
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tionship which subsists between the Gn and the orthonormal poly­
nomials Hn, n^Q, of the (0, 1) normal distribution over (R: 

I 1 
Hm(u)En(u) ——- e-«*iHu = h 

0 V(2TT) 

The Hn are of course the Hermite polynomials 
2 2 

#„(«) = («!) ( - l ) e Z?„(e ), « G o t . 

The relationship in question is that if {<£„, n è 0} is any o.n. subset 
of L$(<SC), and pa, • • • , pn are non-negative integers, then [NPRT, 
p. 94 j" 

( ( Z /><) ! ) 1 / 2 G S ^ | X *f< j = ft WHptiGxfa)} E L*[0,1]. 

In view of this and Equation (26.1), we may recast Theorem 1 as a 
result on orthonormal expansions. The following enunciation of this 
is suggested by Cameron and Martin (8, Theorem I).34 

THEOREM 2 (Fourier-Hermite expansion). Let / £ L 2 [ 0 , l ] , 
{<£n, w^OJ be an o.n. basis for i2((R), and let for all non-negative 
integers p0> • • • , pm, 

Then 

ƒ(•)== S «»... . .^II^ii I *yWd*(r, •)}•, 

tóe convergence being in the L2[0, 1] topology. 

The oj>o.---.2>m a r e called the Fourier-Hermite coefficients of ƒ, and 
the last series the Fourier-Hermite series of ƒ relative to the basis 

;iivusjp0, • • • tJpmvuv?P' 

on (ft2?** by 

83 For functions fPQ, • • • , / ^ on (Rpo, • • •, (RPm, respectively, we define on X7^ofPi 

We define / ( p ) =/x • • • xf (p times). 
84 To get their Theorem 1 from our Theorem 2 we must, however, replace tG( — » , 

co) by/G[0, l ] , andour«G[0, l ] by the path *(•,<*) G Co [0, l l , where C0[0, l ] is the 
support of Wiener measure, i.e., the space of continuous functions x( •) on [0, l ] such 
that a(0)~0. It is outside our purview to report on the important role played by 
Wiener measure over Co[0, l ] in contemporary analysis. We refer to the work of 
Cameron and Martin, M. Kac, Feynman, K. Ito and others. 
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{$n , w^OJ of L2((R). This series plays an important role in Wiener's 
theory of nonlinear filters. 

27. The response of a nonlinear filter to white noise. Let g(-, a) 
be the response of our filter to the white noise signal w( •, a), a £ [0,1 ]. 
We assume first tha t the filter is time-invariant, i.e., if g is the response 
to the inpu t / , then the translate g(- +h) is the response to the input 
ƒ(• +h). Taking ƒ(•) =w( - , a), and recalling that 

(27.1) W(T + t,a) = w(ry Tta), 

where Tt is the flow of white noise over ([0, l ] , Borel, Leb.), cf. (5.6), 
it follows from the time-invariance of the filter that 

(27.2) g(r + t, a) - g(r, 2 » , g(t, a) = g(0, Tta). 

We assume next that our filter is stable in the sense that 

(27.3) g(0, . ) S £ i [ 0 , l ] , 

(and hence g(t, - ) £ £ s [ 0 , l ] ) . Wiener's remarks [NPRT, p. 89] as to 
how this condition restricts the filter are not clear to the writer. (The 
nexus between the ideas under consideration and the subject of non­
linear oscillations needs investigation.) 

By (27.3) and §26, Theorem 2, g(0, •) has a Fourier-Hermite de­
velopment relative to any o.n. basis \<j>n, n^O} of L2((R). From (27.1) 
and (27.2) it easily follows that to get the Fourier-Hermite series for 
g(t, •) we have only to replace the functions <£w(*) by their translates 
<l>n(' —t). T h u s 

(27.4) g(f, •) = E «J*,,-,pmIlZpA I fc(r - t)dx(r, . )> , 
(2>0» * * ' *Pm) i - 0 V J -oo / 

tG (ft. 

Finally, we assume tha t our filter is causal, i.e., if g\, g2 are its re­
sponses to inputs jfi, /2, then for each t, 

fi = ƒ2 on (— 00, /) =» gi = g2 on (~oo, /). 

I t then follows that in (27.4) the upper terminus of the integrals must 
be / and not 00. In effect the functions <j>n must be supported on 
(— 00, 0] , i.e., {(/}n, n^O} must be an o.n. basis for L2(— <», 0]. To 
conclude, each time-invariant, stable, causal filter can be characterized in 
terms of any o.n. basis {<j>n, n è 0} of L2( — <=o, 0] by the system of coeffi­
cients aPOt...tPm occurring in the Fourier-Hermite expansion (27.4) of its 
response at any given moment to white noise. 

By pursuing Wiener's heuristic idea quoted in §25 one should 
be able to prove tha t the coefficients aP0,...tPm suffice to determine the 
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response of our filter to any reasonable input, not just white noise. 
One would then be able to assert tha t to "know" the filter is to know the 
coefficients aPQ,... ,Pm relative to any o.n. basis of L2( — <*>, 0 ]. Such a proof 
does not seem to have been carried out, however, and hence it is 
not clear (to the writer at least) if Wiener's theory is equivalent to 
the others, which have been suggested, based on less random probes, 
cf. e.g. D. Gabor (23). 

28. Synthesis and analysis of nonlinear filters. In the synthesis 
problem the function g(-, a) is prescribed, and we have to design a 
filter ("white box") for which the response to white noise w(*, a) is 
this g(-, a). In the analysis problem we are given a "black box" the 
response of which to white noise is observable, and we are asked to 
determine its characterizing coefficients aPQt...tPm relative to some o.n. 
basis of L 2 ( - c o , o] f cf. (27.4). 

Wiener solved both problems. In his solution a crucial step was his 
selection of the functions Ln(— •)> where Ln is the nth Laguerre func­
tion : 

Ln(t) = e~H X) ( - l ) * ^ * 4 * ^ ! ) - 1 ! )t\ tG [0, co), n à 0, 
*«o \ k / 

for the o.n. basis for L2(— <*>, 0] . Letting <f>j(t) =Lj( — t) and writing 
wa{t) instead of w(t, a) for convenience, we see at once tha t 

ƒ 00 /» t 

fair — t)dx(r, a) = I Lj(t - T)wa(r)dr = (Lj * wa)(l)\ 
i.e., the term on the left is the response at instant / of the linear filter 
Lj* to the white noise signal wa, cf. (20.2), (20.2'). Wiener usually re­
fers to (Lj*wa)(t) as the 0 th ) "Laguerre coefficient of the past of the 
input." I t follows from (27.4) tha t relative to this Laguerre basis 

m 

(28.1) g(t,cc)= £ an,...,PmJiEPj{{.Li*wa){l)), 

and tha t our filter ("black" or "white") can be characterized by the sys­
tem of Laguerre-Hermite coefficients aPQ,...,Pm, 

Now in 1928 Wiener and Y. W. Lee showed how the linear filter 
Lj* ( jèO) c a n b e built from lumped, passive electrical elements— 
the so-called Laguerre networks. As Wiener saw and as we shall now 
indicate, this possibility along with (28.1) permits a theoretical solu­
tion of both the synthesis and analysis problems. 

In the synthesis problem the Laguerre-Hermite coefficients 
aPQt...,Pm are given. The equation (28.1) shows that we can approxi-
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mate to a filter with these coefficients to any desired degree (with the 
RMS error criterion) by suitably cascading a large number of La-
guerre networks with square law rectifiers (multipliers), scale ampli­
fiers and summing circuits. For the analysis problem we find from 
(28.1) with * = 0, that 

<**.....*. = f *(0f «)• I I EPj{{Lj*wam}da. 

Since the Brownian flow (Th JG(R) is ergodic, it follows from the 
Ergodic Theorem and the relations 

g(0, 7 » = g(t, a), w(0, Ttoi) « w(t, a) 

that for almost all a 

** . - . * .= Km - f «(/,«) ft ffpi{ to*^(O}*. 

Now the second factor in the integrand is the response to the white 
noise signal wa of a "white box," easily constructible from Laguerre 
networks, square law rectifiers and summing circuits, and the first 
factor g(t, a) is the "observed" response of our black box to this sig­
nal. Thus, by simultaneously bombarding our black box and the 
white box with the same white noise signal, and passing the outputs 
through a square law rectifier and integrating device we can ap­
proximate to the coefficients aFQt...fPm. In this way both the synthesis 
and analysis problems can be tackled, in principle at least. 

29. Reproduction, learning, self-organization. We can comment 
only very briefly on the bearing of Wieners theory of filters on the 
larger questions of the reproducing, learning and self-organizing 
abilities of natural systems. 

(i) Wiener realized that his solution of the analysis and synthesis 
problems for filters provided a theorita36 for the regeneration of 
filters. In the block diagram on p. 119 W is a white box comprising 
Laguerre networks, square law rectifiers, scale magnifiers and sum­
ming circuits, wired according to the scheme of (28.1). All param­
eters are fixed except those (inductances) which determine the coeffi­
cients aP0,...fPm. W has a number of terminals into which signals con­
trolling these parameters can be fed. Thus W is potentially capable of 
performing the operation of any time-invariant, stable, causal filter. 

Now suppose that we wish to create an operative image of a black 
box B. We can obtain its (po, • • • , pm)th Laguerre-Hermite coeffi­
cient by feeding the same white noise into B and the (known) 
(po, • • • , £m)th white box, and averaging the product of the outputs 
(cf. §28, end). By feeding these averages into the coefficient-contföl-

85 Professor R. B. Braithwaite's substitute for the overburdened term "model" 
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ling terminals of W (cf. Fig.), we can transform W into an actual 
operative image of B. Thus a machine can make another in its own 
likeness. 

(ii) A designed or purposive filter is one whose response g to an input 
ƒ approximates to T(f), where T is some preassigned (well-defined) 
operator. The difference g—T(f) between the actual and ideal re­
sponse, or some norm thereof, is called its error of performance. A 
purposive filter is said to learn, if in the course of its operation the 
error of performance decreases. The existence of such filters is now 
well recognized. 

Wiener visualized a learning filter as a system comprising a per­
forming filter I coupled by feedback to a nonlinear filter I I , [204, 
p. 173; 211, pp. 14, 20-21]. I carries out the routine of transforming 
input ƒ into output g. II keeps a record of past inputs, outputs, and 
errors of performance of I, and has devices for the re-evaluation of the 
parameters governing this performance. Periodically, the system 
takes "time-out" to make this re-evaluation. The results are auto­
matically fed back to I, and the routine resumed with improved effi­
ciency. For instance, the component II of a learning anti-aircraft 
battery would record the long-time trajectories of incoming planes, 
and compute therefrom estimates of the covariances of the hypotheti­
cal underlying SP. For this it would have to include nonlinear devices 
such as square law rectifiers. When these improved estimates of the 
covariances are fed into component I of the battery, the new g's 
produced by I will be closer to the ideal predictor T(f) than before, 
i.e. the performance will improve. 

Wiener compared this ability of a filter to fulfil its own purpose 
better by appropriately modifying its responses in the light of relevant 
external realities to biological adaptation (ontogenetic learning). He 
compared the propagation of such "self-educated" filters with racial 
or phylogenetic learning. 

(iii) Wiener supplemented the ideas just recounted to explain the 
anti-entropic, self-organizing activity of other, less blue-printed, 

white-noise 
generator 
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natural systems. One such activity is the phenomenon of gating in the 
nervous system of animals [204, pp. 197-198]. This function, vitally 
important for the efficient use of nervous tissue, suggests the presence 
of a clock in the brain. How would such a clock survive the continual 
random bombardment it gets from its surroundings? Wiener's answer 
lay in his theory of entrainment or attraction of frequencies. The fol­
lowing is a brief outline of the mathematical side of this [NPRT, 
Lecture 8] . 

Consider an assembly of nonlinearly coupled oscillators, which in 
ideal isolation vibrate harmonically at the (same) fixed frequency co. 
Because of the coupling the undisturbed oscillation eiù)t gives way to 

(29.1) y(t, «) = ««•'ƒ(*, a) 

where 

(29.2) ƒ(/, a) = expUe I I K(t + rh t + r2)dx(rly a)dx(r2, a) >, 

(R2 

€ > 0, 

i.e., the "carrier" eio)t is "quadratically frequency-modulated by white 
noise."36 Actually for computational convenience Wiener took o>~0 
in (29.1) (heterodyned frequency). He also assumed that K is sym­
metric and that e is so small that in the expansion 

ƒ(/, a) « 1 + ie ƒ ƒ K(t + rht + r2)dx(rh a) + 0(e2) 

(R2 

the terms 0(e2) can be neglected. He then showed that the spectral 
distribution F of the SP y(*, •) has a sharp line at the (heterodyned) 
frequency 0, as well as an absolutely continuous part with density 

(29.3) F'(X) - —Î— r | Q(u, \-u) \Hu, 
V(27r)«/_oo 

where Q is the direct Fourier-Plancherel transform of K in L2((R
2). 

Actually the sharp line is smeared by the Doppler effect due to ther­
mal noise, the resulting distribution being of Cauchy type [189]. 
The upshot is that t h e S P y(-, •) has a spectral density which is the 
sum of (29.3) and a Cauchy density. 

Now Wiener was guided by the case of an electric power generating 
system in which, through negative feedback, a number of alternators 
can maintain a sharp frequency despite variations of load. The fre-

86 This is of course a simplification; we should also allow linear, cubic and higher 
order integrals in the { } in (29.2), and determine their contribution. 
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quencies "attract ," i.e., the coupling is such tha t slow alternators are 
speeded up and fast ones slowed down. This led him to stipulate that 

(29.4) K(-th -h) = -K{tuh) 

—a kind of reaction principle. (29.4) entails that Q(u, — u)=0 for 
all u\ whence ^'(O) = 0 . Putting the pieces together we find that the 
process y(-, •) in (29.1) has a spectral density with a sharp peak at 
<o, with a dip and a small hill on either side. This profile is actually 
observed in the empirical spectrum of brain wave encephalographs. 

Thus by dint of nonlinear couplings, the oscillators in an assembly 
can maintain narrow frequency bands, despite the presence of noise. 
Just as E. Hille saw semi-groups where the less initiated saw none, so 
Wiener detected entrainment in very diverse situations, e.g. the 
diurnal rhythm in many animals, the flashing of fire-flies in unison, 
the lumping in the periods of the asteroids, the breakdown of the 
earlier models of electra and comet airplanes. In [210], which was 
perhaps his last mathematical paper, Wiener attempted to show that 
a Hamiltonian or even low dissipative dynamical system, excited by 
random turbulence, would under certain circumstances generate non­
linear oscillations confined to narrow frequency bands. He even felt 
that quantum phenomena could be explained in this way. But the 
systematic discussion of Wiener's ideas on quantum theory, statisti­
cal mechanics and brain waves is beyond our scope. 

30. Epilogue. Much remains to be done, especially at the non­
linear level, to set up Wiener's work on filters as a rigorous mathe­
matical discipline. There are points of contact between his ideas and 
those conceived in the theories of nonlinear oscillations, of higher 
order spectra and general automata, which obviously need systematic 
exploration. 

The ideas underlying Wiener's theory are very far reaching, and 
touch upon the very concepts of existence and progress. A purposive 
filter is able to produce a local zone of organization by absorbing 
energy and information from its environment, and maintaining 
homeostasis by feedback. But every filter must in the course of time 
wither away. As Wiener remarked, "The paradox of homeostasis.is 
tha t it always breaks down in the end."37 The value of existence 
should thus be gauged not in terms of sheer survival but in terms of 
the necessarily fugitive pursuit of anti-entropic activity. In [177, 
pp. 324-325] Wiener describes this predicament eloquently in rela­
tion to his own existence. He concludes: "The declaration of our own 
nature and the a t tempt to build up an enclave of organization in the 

87 Quotation from an unpublished manuscript. 
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face of nature's overwhelming tendency to disorder is an insolence 
against the gods and the iron necessity that they impose. Here lies 
tragedy, but here lies glory too." 

But there is another aspect to this matter with which Wiener was 
also concerned. In the life of a highly organized filter may come 
moments when the fulfillment of its phylogenetic responsibilities 
might necessitate its own destruction. For phylogenetic survival such 
filters must learn a new art—that of sacrifice. The practice and theory 
of this art is religion, and mankind has always associated its highest 
manifestation with martyrdom. Can a theory of sacrifice be formu­
lated within the framework of an enlarged theory of filters? Wiener 
mused on this and related questions in his Terry Lectures at Yale 
and in his posthumously published book [211 ]. Some of his ideas are 
profound, and suggest a way to free modern thought from the lurking 
inconsistency between the scientific and religious positions, which 
A. N. Whitehead and other great thinkers have found so vitiating.38 

In the course of his life Wiener tried to entrain many a filter to his 
point of view. His presence has been a great stimulus and a great 
challenge. One way we can express our affection and gratitude is to 
strive for an intellectual and moral climate in which others like him 
may arise. A more immediate task is to explore further the many 
ideas he has left behind. On the mathematical side, we have the 
problems of nonlinear innovations, of entrainment in relation to non­
linear oscillations, and the clarification of the notion of a stable filter, 
not to mention many others in areas like quantum mechanics, which 
we have not discussed. 
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