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We consider models of a countable first order logic L with an
identity symbol and predicate symbols U, P,, Py, * + -, U being
unary. A model A={4, Uy, Poy, - - - ) for L is said to be a two-
cardinal model if A is infinite and the power of Uy is less than the
power of A. By a set of axtoms for two-cardinal models we mean a set
2 of sentences of L such that U is a model of 2 if and only if there
exists a two-cardinal model which is elementarily equivalent to .

Using results of Fuhrken [1], Vaught [4] proved the following theo-
rem.

THEOREM (VAUGHT). There is a set of axioms for two-cardinal mod-

els. If the language L is recursive, then there is a recursive set of axioms
for two-cardinal models.

We say that L is recursive if the number of argument places of
the symbol P, is a recursive function of n. Vaught's proof depends
on the fact that if 2* is a recursive set of sentences in an extension L*
of the language L, then there is a recursive set 2 of sentences of L
such that 2 and 2* have exactly the same consequences in L. In
principle his proof can be used to construct a particular set of axioms
for two-cardinal models, but the set seems to be so complicated that
in practice one cannot easily tell whether or not a given sentence be-
longs to it. Vaught has proposed the problem of finding a simple
set of axioms for two-cardinal models. The author heard about
Vaught's problem through Dana Scott.

In this note we shall give a particular set of axioms for two-cardinal
models which is simple enough to be written down as a fairly short
axiom scheme. Our theorem was stated without proof in [2]. Let
the individual variables of L be v;, x;, v;, 2;, where =0, 1,2, - - .

TraeoreM 1. A4 set of axioms for two-cardinal models is given by the
set T' of all sentences of the form
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There is one instance of the scheme (*) for each n and each finite se-
quence of formulas ¢o, * * * , ¢m of L with the free variables xo, * * * , Xn.

It is obvious that the set T" of sentences is recursive provided that
the language L is recursive. To prove Theorem 1, we shall use a lemma
of Vaught, which is proved in Morley and Vaught [3, p. 55]. We use
the standard notations Y=PB, A=Y, A<DYB, to mean that ¥ is iso-
morphic to B, U is elementarily equivalent to B, and ¥ is an ele-
mentary submodel of B (see, for example, [3]).

LeMMA (VAUGHT). For each model U for L, the following two condi-
tions are equivalent:

(i) There is a two-cardinal model B such that B=9.

(ii) There exist countable models B, €, such that B=Y, €<V,
@?-‘-SB, (SESB, and Ugg: Usg.

We now prove Theorem 1. First the easy direction. We let ¥ be
elementarily equivalent to a two-cardinal model and prove that %
is a model of T'. Consider a sentence ¢ of the form (*) inT. Let 8, €
be as in part (ii) of the lemma and let f be an isomorphism from % to

@. For all ¢; and all by, - - -, b,E B, the following are equivalent:
bo, + - -, ba satisfies ¢; in B;
fbo, - - -, fbs satisfies ¢, in €;
fbo, + * -, fb, satisfies ¢;in B.

We shall use the fact that the first line above implies the third line.
To show that ¢ holds in 9B, we find an element v, in B and functions

yi(xo, * + +y %), 2i(X0y + ¢+, %), ©=0, -+, #n on B such that the
inner part of ¢ holds in 9 for all x,, - - -, x, in B. Take for v, any
elementof B—C. Letyi(xo, + + «, %) =f(x;). If U(xs), letzi(xo, + + -, %5)

=f-1(x;), and otherwise choose z; arbitrarily. These choices of v,, y;,
z; show that ¢ holds in B and thus in . Therefore U is a model of Y.

We now prove the converse. Assume U is a model of I'. We extend
the language L to a language L* by adding a new individual constant
¢ and function symbols F,, G, with n-+1 argument places, n=0, 1,
2, - - - . Let T'* be the set of all the sentences below:

(1) Wxo * - %n, ¢ = Fulo, = + 5 %a)-

(2) Wxo « + - %a, (U(wy) & 5 = Gj(o, + + +, %) = Falwo, - + -, %) = %),

(3) %o * + * %n, [d’(xo, Ceey X)) ¢(F0(x0)’ tt Fﬂ(xO’ T xn))]
The scheme (1) contains one sentence for each %, (2) contains a sen-
tence for each # and each ¢, j S#, while (3) contains one sentence for
each # and each formula ¢(xo, - - -, x,) of the original language L.
Since ¥ is a model of T, it follows that for each finite subset T'g CT'*
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the model ¥ can be expanded to a model (¥, ¢, Fo, - - -, Go, - - - ) of
T¥. Let A be the set of all sentences of L which hold in . Then the
set of sentences A\UT'* is finitely satisfiable. By the compactness and
Lowenheim-Skolem theorems, A\UTI* has a countable model
(B, ¢, Fo,»++, Gy, » -+ ). Since B is a model of A, B=U. We shall
show that 8 has the property described in part (ii) of the lemma.

Let us list the elements of B, say B= {'bo, by, * « + 3 bpy - } De-
fine the function f on B into B by

S () = Fn(bo, by, * + +, ba).

This definition is unambiguous even if some b occurs more than once
in the sequence by, by, - - -, because of (3). We claim that f has the
following three properties:

(4) Range of f=B.

(5) UgCrange of f.

(6) For all formulas ¢(x, « + +, %s) Of L, if by, - - -, b, satisfies ¢
in B then so does fby, * + + , fou.

Condition (4) is guaranteed by the sentences (1). Condition (5) is
guaranteed by (2), because if U(b;) and b;=G;(by, - - -, b;), then

choosing n=1%, j we have f(b;) = F;(bo, + + +, b;) =b;. Finally, condi-
tion (6) is guaranteed by (3).

Now let € be the submodel of B such that C is the range of f. It
follows from (4) that €8, and from (5) that Uy CC. From (6) we
see that f is an isomorphism from 8B to €, and it follows that Ug= Uy
and B=x<C. It also follows from (6) that €<B, because if fby, - - + , fb,
satisfies ¢ in € then by, - - -, b, satisfies ¢ in B and hence fbo, - - + , fbn
satisfies ¢ in 8. By the lemma, there is a two-cadinal model which is
equivalent to A. Our proof is complete.

There are several ways in which we can modify the scheme (¥*)
without affecting the proof of Theorem 1. This gives us some other
slightly different sets of axioms for two-cardinal models. One pos-
sibility is to replace the scheme (*) by

oW %0 FYoZ0 * * * Y%n TYu2a
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Another scheme of axioms for two-cardinal models which will work
with the same proof is:
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Everything works out just as well if we define the notion of a two-
cardinal model in the following slightly different way. Let the lan-
guage L have two unary predicates U, V, in addition to Po, Py, - + - .
By a two-cardinal model we now mean a model ¥ for L such that
Vy is infinite and the power of Uy is less than the power of Vy. Then
we get a set of axioms for two-cardinal models simply by adding the
extra term V(y,) to the conjunction inside the quantifiers in the
scheme (*).
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