THE TOPOLOGICAL COMPLEMENTATION PROBLEM

BY A. K. STEINER^{1,2}

Communicated by R. S. Pierce, August 30, 1965

Let Σ be the lattice of all topologies definable on an arbitrary set E. Then Σ is a complete lattice with the trivial topology, $\{\emptyset, E\}$, as the least element and the discrete topology, P(E), as the greatest element.

The problem of complementation in the lattice Σ has been outstanding for some time although several investigators have provided partial solutions. Hartmanis [6] first showed that Σ was a complemented lattice if the set E was finite and Gaifman [4] proved Σ was complemented if E was countable. Berri [1], using the results of Gaifman, was able to provide complements for certain special topologies such as a topological group with a dense, nonopen, countable subgroup.

It is the purpose of this paper to introduce the lattice of principal topologies, and to establish that the lattice Σ of all topologies on a set E is complemented.

The following theorems are stated without proof. The full details will be published elsewhere.

1. Principal topologies. A topology $\tau \in \Sigma$ is called an ultraspace if the only topology finer than τ is the discrete topology. Fröhlich [3] shows that every topology τ is the infimum of ultraspaces finer than τ . For a filter \mathfrak{F} on E and a point $x \in E$, Fröhlich defined $\mathfrak{S}(x, \mathfrak{F})$ to be the family of sets $P(E - \{x\}) \cup \mathfrak{F}$, which is a topology. He proved the ultraspaces are the topologies of the form $\mathfrak{S}(x, \mathfrak{U})$ where $x \in E$ and \mathfrak{U} is an ultrafilter on E different from the principal ultrafilter at x, $\mathfrak{U}(x)$. The set of ultraspaces may be divided into two classes each of which generates a sublattice of Σ . One of these sublattices consists of all T_1 -topologies. The other is called the lattice of principal topologies.

Every topology τ on E is the infimum of all ultraspaces on E finer than τ . If also $\tau = \inf \left\{ \mathfrak{S}(x, \mathfrak{U}(y)) \middle| \mathfrak{S}(x, \mathfrak{U}(y)) \geq \tau \right\}$ then τ will be called a principal topology.

¹ These results are part of the author's doctoral dissertation, submitted to the University of New Mexico.

² This research was partially supported by the National Science Foundation, Grant GP-2214.

Theorem 1.1. The principal topologies form a sublattice of the lattice Σ .

The lattice of principal topologies on E will be denoted Π . The lattice Π is a complete lattice but is not a complete sublattice of Σ .

THEOREM 1.2. A topology τ on E is a principal topology if and only if for each $x \in E$ there is a minimal element in τ containing x.

A principal topology then, is one which is closed under arbitrary intersections.

The family G of pre-order relations forms a complete lattice with $E \times E$ as the greatest element and $\Delta = \{(x, x) | x \in E\}$ as the least element.

A relation G defines a topology τ_G on E: A set $S \subset E$ is open if and only if for each $x \in S$, if $(x, y) \in G$ then $y \in S$. The topology τ_G determined by the relation G is a principal topology.

THEOREM 1.3. There is a one-to-one correspondence between principal topologies in Π and pre-order relations in \mathfrak{S} .

THEOREM 1.4. The lattice Π of principal topologies is anti-isomorphic to the lattice $\mathfrak G$ of pre-order relations.

Theorem 1.5. The lattice g of pre-order relations on a set E is a complemented lattice.

It follows from Theorem 1.4 that Π is a complemented lattice. Since every topology on a finite set is a principal topology, this result extends the result of Hartmanis [6].

2. Complementation of the lattice Σ . A topology $\tau \in \Sigma$ has a principal complement if it has a lattice complement which is a principal topology.

Gaifman [5] proved that if every T_1 -topology on a set has a complement then every topology on that set has a complement. Modifying his proof we obtain

THEOREM 2.1. If every T_1 -topology on a set E has a principal complement, then every topology on E has a principal complement.

THEOREM 2.2. Let τ be a topology on a set $E = E_1 \cup E_2$ where $E_1 \cap E_2 = \emptyset$, such that $\tau \mid E_1$ and $\tau \mid E_2$ have principal lattice complements. Then τ has a principal complement.

THEOREM 2.3. If every topology (T_1 -topology) with no isolated points has a principal complement, then every topology (T_1 -topology) has a principal complement.

The next theorem is an extension of a result of Berri [2]: A topology on a set E has a complement if there is a decomposition of E into countable sets such that no union of any proper subcollection is open.

THEOREM 2.4. Let τ be a topology on a set E such that

- (i) $E = \bigcup_{\alpha \in \theta} E_{\alpha}$, where E_{α} 's are pairwise disjoint,
- (ii) $\tau \mid E_{\alpha}$ has a principal complement τ_{α}' , for all $\alpha \in \theta$,
- (iii) if $V \in \tau$ and if $V \neq E$, \varnothing , then V is not the union of E_{α} 's. Then τ has a principal complement τ' . If some τ'_{α} has an isolated point, so does τ' .
- THEOREM 2.5. Let τ be a T_1 -topology on a set E containing a proper open set S with at least two points, such that $\tau \mid S$ has a principal complement with an isolated point. Then τ has a principal complement with an isolated point.

THEOREM 2.6. A T_1 -topology with no isolated points has a principal complement with an isolated point.

Now from Theorems 2.6, 2.3 and 2.1 we have

THEOREM 2.7. The lattice of topologies on any set is complemented. Moreover, each topology has a principal complement.

REFERENCES

- 1. M. P. Berri, Lattice complements of certain topologies, Abstract 65 T-94, Notices Amer. Math. Soc. 12 (1965), 227.
- 2. ——, The complement of a topology for some topological groups, Fund. Math. (to appear).
- 3. O. Fröhlich, Das Halbordnungssystem der Topologischen Räume auf einer Menge, Math. Ann. 156 (1964), 79-95.
- 4. H. Gaifman, The lattice of all topologies on a denumerable set, Abstract 61 T-161, Notices Amer. Math. Soc. 8 (1961), 356.
- 5. ——, Remarks on complementation in the lattice of all topologies (unpublished paper).
 - 6. J. Hartmanis, On the lattice of topologies, Canad. J. Math. 10 (1958), 547-553.

University of New Mexico