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1. Introduction. Let M be a connected Riemannian manifold of
dimension #, Co(J) its largest connected group of conformal trans-
formations and I (M) its largest connected group of isometries. In
an earlier paper [2], one of the authors and S. Kobayashi established
the following result:

THEOREM 1. A compact homogeneous Riemannian manifold for
which Co(M)#=I(M) and n>3 is globally isometric with a sphere.?

In the final step of the proof of this theorem the following state-
ment, which is by no means easy to establish, was utilized:

PROPOSITION 1 (YANO-NAGANO [6]). 4 complete Einstein space for
which Co(M)#1,(M) and n>2 is globally isometric with a sphere.

Without this fact it was shown that the simply connected Rie-
mannian covering of M is globally isometric with a sphere. Using this
statement, an elementary proof of Theorem 1, i.e. a proof which does
not use Proposition 1, is given (see Proposition 4).

All other results in this direction employ Proposition 1 in the final
analysis. We list several of these:

ProPoSITION 2 (NAGANO [4]). 4 complete Riemannian manifold
with parallel Ricci tensor for which Co(M)# Io(M) and n>2 is globally
isometric with a sphere.

This generalizes Proposition 1.

ProrosiTioN 3 (LicaNErowicz [3]). Let M be a compact Rieman-
nian manifold of dimension n>2 whose scalar curvature R is a positive
constant and for which trace Q?=const. where Q is the Ricci operator
(see [1, p. 87]). Then, if Co(M)5~Io(M), M is globally isometric with
a sphere.

This generalizes Theorem 1 and Proposition 2.

In §4, Proposition 1 will be generalized. Denote the Lie algebra of
1 The research of both authors was supported by NSF Grant GP 3624.

2 The first part of the proof of Theorem 1 appears in a previous paper published in

the Amer. J. Math 84 (1962), 170-174 by S. I. Goldberg and S. Kobayashi entitled
The conformal transformation group of a compact Riemannian manifold.
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Co(M) by Co(M). Let XECo(M) and £ be the covariant form of X
defined by duality by the Riemannian métric (, ) of M:E=(X,.).
Let Ci(M)={t|t=(X,-), XECo(M)} and denote by d and § the
differential and codifferential operators of de Rham and Hodge. Then

[cf. M. Obata and K. Yano, C. R. Acad. Sci. Paris 260 (1965), 2698—
2700].

THEOREM 2. Let M be a compact Riemannian manifold of dimension
n>3 for which R=const. and Co(M)=Io(M). If d6Cy(M) is an in-
variant subspace of Q, then M is globally isometric with a sphere.

This theoremal most completely answers the question raised in [2],
namely,

Is a compact manifold of dimension n>2 with constant (positive)
scalar curvature for which Co(M)#I(M) isometric with a sphere?

Observe that Proposition 1 is an easy consequence of Theorem 2.

2. Isometries and conformal fields. If T is an isometry of the unit
sphere S”in E**1, then T may be viewed as an orthogonal linear trans-
formation of E**! restricted to S*. It is clear that any such isometry
will map Killing fields into Killing fields and constant conformal
fields (dp=(X, -)) into constant conformal fields. Thus if a con-
formal field is invariant under T so are its constant and Killing
parts. It follows that if T leaves a non-Killing conformal field invari-
ant then it has a fixed point, namely N/“NII &S*, where N is a con-
stant field in E*+! and N— (N, P)P (P& S") is the constant part of V.

3. Conformal fields on a manifold of positive constant curvature.
If M is a compact Riemannian manifold with constant positive curva-
ture then the nature of the conformal group of M does not change if
we normalized the curvature so thatitis 1. Thus, S is the simply con-
nected covering Riemannian manifold of M. If M has a non-Killing
conformal vector field V then this vector field may be lifted to a
non-Killing conformal vector field V on S*. Moreover, V is invariant
by the deck transformations of the covering space S*— M. But only
the identity deck transformation can have a fixed point, and since a
deck transformation is an isometry we have from §2 that there are
no deck transformations except the identity. This proves the follow-
ing special case of Proposition 1;

ProrosiTION 4. If a compact Riemannian manifold of positive con-
stant curvature admits o non-Killing conformal vector field then it is
globally isometric with a sphere.

Since the above argument clearly works for n=2, we have
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CoRroLLARY. The real projective plane does not admit a non-Killing
conformal vector field.

4. Conformal fields on manifolds of constant scalar curvature.
We sketch the proof of Theorem 2. Let £=d¢ be an element of Cg (M).
Then, Qdét=dsQt. Conversely, suppose d6Cq(M) is an invariant
subspace of Q. Then, there exists a £§&€Cy(M) such that déf is an
eigenvector of Q, that is Qddt = (R/n)ddtE Cy(M). Moreover, since
Ast=(R/(n—1))8 (see [1, p. 264]),

R
dét = —— £+ (Y, -)
n—1

where Y is a Killing field. That this can only hold if M has constant
curvature is a consequence of the following:

LEMMA. Let M be a compact Riemannian manifold on which there is
a nonconstant function ¢: M—R whose gradient £ =dp & Co(M). Then,
there are no nonzero tensors of the type (r, s), 0<2(s—r)=n invariant
under X where E=(X, ).

The proof of this lemma is intended for a subsequent paper.
Setting

T4, B) = (4, B) = = (4, B),

where R is the Ricci tensor, it can be shown that 6(¢£) T=0. Since the
Weyl conformal curvature tensor is invariant under X, we see by the
lemma that M is conformally flat. However, since 8(£)T vanishes,
a further application of the lemma gives T"=0, that is M is an Ein-
stein space. But a conformally flat Einstein space has constant curva-
ture, and so by Proposition 4, M is globally isometric with a sphere.
This proves Theorem 2 and generalizes Proposition 1.
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