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In 1956 Nehari, [N.l] showed that the singular points to of the 
Legendre series, 

(i) *(o = £<*nP«(o, |* + i | + h - i | < p +—* 
n-*0 P 

where lirn sup^*, | an\
lln—p-1 < 1, are related to the singular points f o 

of the associated power series, 

(2) /(f) = E^r, k | <P~S 

by the formula Jo = 10*0 + 1/To), providing UT£±\. The purpose of 
this note is to announce similar results concerning the singularities 
of functions <j>(z) defined by series of the form ^"«o <Wn(s), where 
the vn(z) are normalized eigenfunctions of the Sturm-Liouville system 

*"(*) + (P2 - ««M») = o, 
z/(0) + Av(0) = !>'(TT) + BV(T) = 0. 

Indeed we are able to establish the following result. 
THEOREM. Let q(z)€~C*[0, w], let the vn(z) be the set of normalized 

eigenfuncHons of the Sturm-Liouville system (3), and let {an} be a 
sequence of complect numbers such that lim supn-w \an\

 lln~p~~l<l. 
Furthermore, let us introduce the pair of analytic function elements de­
fined in a neighborhood of the origin, 

(A) /(r)-2>«r, |r| <p-
?i«0 

(B) *(0 - £ <M*»W» h + l | + h - l | < p + —; 
n=0 P 
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where un(cos z)^vn(z). Then, providing /y*±l , the f unction \l/(t), de-
fined above is singular at those points t — i(pi+l/a), where f = a is a 
singular point of the series j"(f). 

SKETCH OF PROOF. The method of proof parallels that given origi­
nally by Nehari [N.l] which has been extended by Gilbert [G.l-4], 
and Gilbert and Howard [G.H.1-2], who have used these ideas in 
conjunction with Bergmand integral operator method [B.l-2] for 
the study of partial differential equations. (See also the survey paper 
by Gilbert, Howard and Aks [G.H.A.l].) 

We are able to introduce an integral operator $[ƒ], which maps 
power series (A) onto the eigenfunction series (B). Furthermore, we 
also are able to construct an inverse operator SF""1^], which maps 
\[/(t) onto/(f). These operators may be seen to have the form given 
below, 

J in—PO f 

where Kp0<p, and 

ff->M - ƒ m, rlw® dt, 

where the integration is along the real axis, and where K(t, f) 
= ĈTT-O ttn(0f""n- By the use of the elementary Hartogs' theorem 
[B.M.I ], and known appraisals for the vn(z) (and hence for the 
un(t)) as n~-»oo we are able to establish that K(t, f-1) is a holomorphic 
function of two complex variables in certain product domains; conse­
quently, we may consider the above integrals as Cauchy integrals. 

We are also able to determine the first analytic set (moving out­
wards from the origin in the f-plane) on which K(tt f""1) is singular, 
as given by {f2 —2£7+l=0}. Using this information plus the argu­
ment used by Hadamard [H.l], [N.l] in his proof of the "multiplica­
tion of singularities" theorem, allows us to establish the fact that if 
ƒ(£) is singular at f=ce, ( |a | = l /p ) , then in the compact ellipse, 
| / + l | + | * - l | ^ P + l / p , M ) is regular for all points t^(a+l/a). 
Correspondingly, we are able to show if yf/{t) has a singularity on the 
boundary of the above ellipse, say at J=cr, (<r = $(a+lA*))i then /(f) 
is regular at all points f7*a, such that |f| =*|a|. Combining these 
results yields the above theorem. 

REMARK. We have also been able to find analogous results for eigen-
function expansions associated with quite general wth order Sturm-
Liouville systems. These results along with the details of the above 
proof will be published elsewhere. 
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