Soc. Colloq. Publ. Vol. 31, Amer. Math. Soc., Providence, R. I., rev. ed., 1957.

- 7. N. Jacobson, Lie algebras, Interscience, New York, 1962.
- 8. E. Nelson, Analytic vectors, Ann. of Math. 70 (1959), 572-615.
- 9. L. Pontrjagin, Topological groups, Princeton Univ. Press, Princeton, N. J., 1939.
- 10. I. E. Segal, A class of operator algebras which are determined by groups, Duke Math. J. 18 (1951), 221-265.
- 11. S. Yosida, On the differentiability and the representation of one parameter semigroup of linear operators, J. Math. Soc. Japan 1 (1948), 15-21.

PRINCETON UNIVERSITY AND
UNIVERSITY OF CALIFORNIA, BERKELEY

WEAK LEVI CONDITIONS IN SEVERAL COMPLEX VARIABLES¹

BY AVNER FRIEDMAN

Communicated by R. P. Boas, June 28, 1965

1. Introduction. Let $\Omega = \{z; z \in \Omega_0, \rho(z) < 0\}$ be a bounded domain in \mathbb{C}^n , where $\rho \in C^2(\Omega_0)$, Ω_0 a neighborhood of Ω , and let grad $\rho \neq 0$ on $\partial \Omega$. As is well known, if Ω is a domain of holomorphy then for any $x^0 \in \partial \Omega$.

(1)
$$L(\rho(x^0), w) \equiv \sum_{j,k=1}^n \frac{\partial^2 \rho(x^0)}{\partial z_j \partial \bar{z}_k} w_j \bar{w}_k \ge 0$$
 whenever $\sum_{j=1}^n \frac{\partial \rho(x^0)}{\partial z_j} w_j = 0$,

and, if (1) holds with strict inequality (for $w \neq 0$) then Ω is a domain of holomorphy. (1) is called the *Levi condition* (LC) and, in case of strict inequality, the *strict* LC. One of the consequences of the present work is that the above statement remains true if the assumption $\rho \in C^2$ is replaced by $\rho \in H^{2,\infty}$ (see §2).

In what follows Ω is always given by ρ as above, where $\rho \in C^1(\Omega_0)$, grad $\rho \neq 0$ on $\partial \Omega$.

2. **Definitions.** If ρ has second weak derivatives which belong to $L^p(\Omega_0)$ $(1 then we say that <math>\Omega$ and ρ belong to $H^{2,p}$. Actually we shall only need the derivatives $\partial^2 \rho / \partial z_j \partial \bar{z}_k$ to belong to L^p , but then

¹ This work was partially supported by the Alfred P. Sloan Foundation and by Nasa Grant NGR 14-007-021.

necessarily $\partial^2 \rho / \partial z_j \partial z_k$ are in L^p in compact subsets.² If the weak derivatives $\partial^2 \rho / \partial z_j \partial \bar{z}_k$ are continuous, then we say that Ω and ρ belong to $H^{2,\infty}$. The weak derivatives $\partial^2 \rho / \partial z_j \partial z_k$, are not, in general, even in $L^{\infty,8}$

Let t(z) be a C^{∞} function with support in |z| < 1, $\int t(z)d\lambda = 1$ $(d\lambda = \text{Lebesgue measure in } C^n)$ and consider

$$\rho_{\epsilon}(z) = \frac{1}{\epsilon^{2n}} \int_{\Omega_0} \rho(\zeta) t\left(\frac{z-\zeta}{\epsilon}\right) d\lambda,$$

for $\epsilon > 0$ sufficiently small, in some neighborhood Ω_* of $\Omega(\bar{\Omega}_* \subset \Omega_0)$. If $\rho \in H^{2,p}$ $(p < \infty)$ then, as $\epsilon \to 0$, $\rho_{\epsilon} \to \rho$, $D\rho_{\epsilon} \to D\rho$ uniformly in Ω_* , $\int_{\Omega_*} |D^2 \rho_{\epsilon} - D^2 \rho|^p d\lambda \to 0$; if $\rho \in H^{2,\infty}$ then the last relation is replaced by $\partial^2 \rho_{\epsilon} / \partial z_j \partial \bar{z}_k \to \partial^2 \rho / \partial z_j \partial \bar{z}_k$ uniformly in Ω_* ; D is any first order derivative.

Introduce positive functions $\phi_p(A)$, $\psi_p(A)$ and $\eta(\epsilon)$ such that $\eta(\epsilon)$ $\rightarrow 0$ if $\epsilon \rightarrow 0$ and

(2)
$$\sum_{l,k} \left\{ \int_{A} \left| \frac{\partial^{2}}{\partial z_{i} \partial \bar{z}_{k}} (\rho_{\epsilon} - \rho) \right|^{p} d\lambda \right\}^{1/p} \leq \phi_{p}(A) \eta(\epsilon),$$

(3)
$$\sum_{i,k} \left\{ \int_{A} \left| \frac{\partial^{2} \rho}{\partial z_{i} \partial \bar{z}_{k}} \right|^{p} d\lambda \right\}^{1/p} \leq \psi_{p}(A).$$

If $\rho \in H^{2,p}$ (1 then such functions clearly exist. We take

(4)
$$\phi_p(A) = \psi_p(A) = C(\text{vol. } A)^{1/p} \text{ if } \rho \in H^{2,\infty} \ (C = \text{const.} \neq 0).$$

3. Levi conditions.

DEFINITION 1. Let $\Omega \subset H^{2,p}$. We say that the weak Levi condition with index p (WLC_p) holds at $x^0 \subset \partial \Omega$ if for any $\epsilon > 0$ there exist δ such that

(5)
$$\int_{B_{\delta}} L(\rho(z), w(z)) d\lambda$$

$$\geq -\epsilon \left\{ \phi_{p}(V_{w}) + \psi_{p}(V_{w}) + (\text{vol. } V_{w})^{1/p} \right\} \left\{ \int_{B_{\delta}} |w(z)|^{2q} d\lambda \right\}^{1/q},$$

for any $w \in C^0(B_b)$ satisfying

² This follows from the inequality (z 1-dimensional) (*) $\int_A |\partial w/\partial z|^p dz \wedge d\bar{z} \leq \text{const.}$ $\int_B (|\partial w/\partial \bar{z}|^p + |w|^p) dz \wedge d\bar{z}$ where A is relatively compact to B. To prove(*) use integral representation for w (which may be assumed to have compact support) in terms of $\partial w/\partial \bar{z}$ and L^p estimates for singular integrals.

Indeed, in the contrary case, an argument involving the closed graph theorem yields an inequality of the form $||u.b._A|| \frac{\partial^2 w}{\partial z^2}| \le \text{const. } ||u.b._B|| \frac{\partial w}{\partial z^2} \frac{\partial z}{\partial z}| + \frac{\partial w}{\partial z}| + \frac{\partial w}{\partial z}| + \frac{\partial w}{\partial z}|$ (the same notation as in footnote 1) which is impossible (by [2]).

(6)
$$\sum_{j=1}^{n} \frac{\partial \rho(z)}{\partial z_{j}} w_{j}(z) = 0 \quad \text{in } B_{\delta}.$$

Here V_w is the support of w, 1/q+1/p=1, $B_{\delta}=B(x^0, \delta)$ is the ball with center x^0 and radius δ , and δ is sufficiently small such that $B_{\delta} \subset \Omega_{\bullet}$ and grad $\rho \neq 0$ in B_{δ} .

If we require w to have weak derivatives in L^p , then all the results below remain unchanged; (5) then takes the equivalent form

(7)
$$\begin{split} \sum_{j,k} \int_{B_{\delta}} \frac{\partial \rho}{\partial z_{j}} \frac{\partial w_{j}}{\partial \bar{z}_{k}} \bar{w}_{k} d\lambda \\ & \leq \epsilon \left\{ \phi_{p}(V_{w}) + \psi_{p}(V_{w}) + (\text{vol. } V_{w})^{1/p} \right\} \left\{ \int_{B_{\delta}} |w|^{2q} d\lambda \right\}^{1/q}. \end{split}$$

Note however that if ρ is not assumed to have second weak derivatives in L^p then there may not exist any w with first derivatives in L^p which satisfies (6).

DEFINITION 2. Let $\Omega \in H^{2,p}$. We say that the WLC_pI holds at $x^0 \in \partial \Omega$ if for any $\epsilon > 0$, $\delta > 0$, there is a point $\bar{x} \in \partial \Omega \cap B_{\delta}$ and $0 < \mu < \delta - |x^0 - \bar{x}|$ such that (5) holds with B_{δ} replaced by $B(\bar{x}, \mu)$, for any w satisfying (6) in $B(\bar{x}, \mu)$.

DEFINITION 3. Let $\Omega \in H^{2,p}$. If for some positive ϵ_0 , δ and for any set $A \subset B_{\delta}$

(8)
$$\int_{A} L(\rho, w) \, d\lambda \ge \epsilon_0 \{ \phi_p(A) + \psi_p(A) + (\text{vol. } A)^{1/p} \} \left\{ \int_{A} |w|^{2q} \, d\lambda \right\}^{1/q}$$

for any $w \in C^0(A)$ satisfying (6) in A and such that $1 \le |w(z)| \le 2$ in A, then we say that the *strict* WLC_p holds. The strict WLC_pI is defined similarly.

Note that if we omit the condition $1 \le |w| \le 2$ and replace A by V_w , where $w \in C^0(B_\delta)$, then we obtain a condition which, although analogous to (5), is too restrictive if $p < \infty$, as seen by applying it to a sequence of w's whose support is B_δ but whose limit has its support in $B_{\overline{\gamma}}$ for any given $0 < \eta < \delta$. Note also that all the results below remain unchanged if in (8) we replace (vol. $A)^{1/p} \{ \int |w|^{2q} d\lambda \}^{1/q}$ by $\int |w|^2 d\lambda$. Finally, all the results remain true if we modify Definitions 1, 2 and 3 by taking $w(x) \equiv \text{const.}$ such that (6) holds at one point of B_δ , $B(\bar{x}, \mu)$ and A respectively.

4. Statement of results.

THEOREM 1. Let $\Omega \in H^{2,p}$ $(1 . If <math>\rho \in H^{2,\infty}(N)$ where N is some neighborhood of x^0 , then (i) the WLC_p, WLC_pI and the LC at x^0

coincide, and (ii) the strict WLC_p , strict WLC_pI and the strict LC at x^0 coincide.

THEOREM 2. Let $\Omega \in H^{2,p}$ $(1 . If <math>\partial \Omega$ satisfies the strict WLC_p then Ω is a domain of holomorphy.

THEOREM 3. Let $\Omega \in H^{2,p}$ $(1 . If <math>\Omega$ is a domain of holomorphy then $\partial \Omega$ satisfies the WLC_pI.

Set $K = \overline{\Omega}$. Denote by A(K) the algebra of uniform limits of functions holomorphic on K, by S(K) the space of its maximal ideals, and by $\Gamma(K)$ its Shilov boundary. If K is S_{δ} , i.e., if $K = \bigcap_{m=1}^{\infty} \Omega_m$ where Ω_m are domains of holomorphy then (Rossi [4]) S(K) = K and, if $\partial \Omega \subset C^2$, $\Gamma(K) = \operatorname{Cl}(P(K))$ where P(K) is the set of points of $\partial \Omega$ where the strict LC holds and "Cl" means "closure of." Furthermore, for each $\bar{x} \in P(K)$ there exists f holomorphic on K with

(9)
$$|f(\bar{x})| > |f(z)|$$
 for all $z \in K$, $z \neq \bar{x}$.

THEOREM 4. If K is S_{δ} , $\Omega \in H^{2,p}$ and $\partial \Omega$ satisfies the strict WLC_p, then $\Gamma(K) = \partial \Omega$.

Theorem 4 can be extended to the case where the strict WLC_p holds only on a part (say E) of $\partial\Omega$, provided $\rho\in C^2$ in a neighborhood of $\partial\Omega\setminus\overline{E}$.

Finally, Theorems 2-4 extend to domains Ω which are only locally given by functions ρ in $H^{2,p}$. One uses a partition of unity in conjunction with the arguments given below.

5. Proofs outline. To prove $LC \Rightarrow WLC_p$, write

$$L(\rho(z), w(z)) = L(\rho(z) - \rho(x^0), w(z)) + L(\rho(x^0), w(z) - w^0) + L(\rho(x^0), w^0)$$

and, given $\eta > 0$, determine δ , w^0 such that $|w(z) - w^0| \le \eta |w(z)|$ in B_{δ} , and make use of (4) and of Hölder's inequality. To prove WLC_p $I \Rightarrow$ LC, assume $L(\rho(x^0,) |w^0| < -\epsilon_0 |w^0|^2$ and derive $L(\rho(z), |w(z)| < -\epsilon_0 |w^0|^2/2$ ($w, |w^0|$ related as above), then integrate. Since WLC_p \Rightarrow WLC_pI, (i) follows. The proof of (ii) is similar.

To prove Theorem 2, take $\Omega_m = \{z; z \in \Omega_*, \rho_m(z) \equiv \rho_{\epsilon_m}(z) - \delta_m < 0\}$ with $\epsilon_m \to 0$, $\delta_m \to 0$, such that, $\Omega_m \supset \Omega_{m+1}$, and let $x^0 \in \partial \Omega$ and ϵ_0 , δ as in Definition 3. Let $m \geq m_0$ be such that $B_\delta \cap \partial \Omega_m \neq \emptyset$ and take $A \subset B_\delta$, $A \cap \partial \Omega_m \neq \emptyset$. Given $W \in C^0(A)$ satisfying (6) with ρ replaced by ρ_m , choose $w \in C^0(A)$ satisfying (6), with $|W(z) - w(z)| \leq \mu_m |W(z)|$, $\mu_m \to 0$ if $m \to \infty$. Writing

$$\int_{A} L(\rho_{m}, W) d\lambda = \int_{A} L(\rho, w) d\lambda + \int_{A} L(\rho_{m} - \rho, W) d\lambda + \int_{A} L(\rho, W - w) d\lambda$$

and using Hölder's inequality and (8), derive (8) with ρ , w, ϵ_0 replaced by ρ_m , W, $\epsilon_0/2$ provided $m \ge m_1$. Thus, the strict WLC_p (and, by Theorem 1, the LC) holds at each point $\bar{x} \in \partial \Omega_m \cap B_{\bar{s}}$. By the Heine-Borel Theorem, the LC then holds at all the points of $\partial \Omega_m$, for all large m; thus these Ω_m (and, necessarily, also Ω) are domains of holomorphy.

To prove Theorem 3, let $x^0 \in \partial \Omega$ and ϵ , δ as in Definition 2. Choose $\phi \in C^{\infty}$ (C^n) satisfying: $\phi = 1$ in $B(x^0, \delta/2)$, $\phi = 0$ outside $B(x^0, \delta)$, $0 \le \phi \le 1$, elsewhere. Take $\tilde{p}_{\gamma} = p_{\gamma} - A_{\gamma} + B_{\gamma}\phi(z)$ with $A_{\gamma} \to 0$, $B_{\gamma} \to 0$ if $\gamma \to 0$, such that the domain Ω , defined by $\tilde{p}_{\gamma} < 0$, is contained in Ω and $\partial \Omega$ touches $\partial \Omega$ at some point $\bar{x} \in B(x^0, \delta)$. Observing that not all the functions holomorphic in Ω can be continued into a neighborhood of \bar{x} , a result of Lewy [3] (see also [1, Chapter 2]) implies

$$L(\tilde{\rho}_{\gamma}(\bar{x}), w) \geq 0$$
 whenever $\sum \frac{\partial \tilde{\rho}_{\gamma}(\bar{x})}{\partial z_{i}} w_{j} = 0$.

Now use arguments as in the previous two proofs.

To prove Theorem 4, it suffices to show that for any $x^0 \in \partial \Omega$ and $\delta > 0$ there exists a point $\bar{x} \in \partial \Omega \cap B_{\delta}$ for which (9) holds. With ϕ as before, construct $\hat{\rho}_{\gamma} = \rho_{\gamma} - A_{\gamma}' - B_{\gamma}' \phi$ $(A_{\gamma}' \to 0, B_{\gamma}' \to 0, B_{\gamma}' > 0)$ such that $\hat{\Omega}$, defined by $\hat{\rho}_{\gamma} < 0$, contains Ω and $\partial \hat{\Omega}$ touches $\partial \Omega$ at some point \bar{x} in $\partial \Omega \cap B_{\delta}$. Show that the result (9) of Rossi can be applied in $\hat{\Omega}$.

REFERENCES

- 1. L. Hörmander, Lectures on functions of several complex variables, Van Nostrand, Princeton, N. J., 1965 (to appear).
- 2. K. de Leeuw and H. Mirkil, Majorations dans L_∞ des opérateurs différentiels à coefficients constants, C. R. Acad. Sci. Paris 254 (1962), 2286-2288.
- 3. H. Lewy, On the local character of the solutions of an atypical linear differential equation in three variables and a related theorem for regular function of two complex variables, Ann. of Math. 64 (1956), 514-522.
- 4. H. Rossi, Holomorphically convex sets in several complex variables, Ann. of Math. 74 (1961), 470-493.

NORTHWESTERN UNIVERSITY