SOME HOMOTOPY GROUPS OF STIEFEL MANIFOLDS¹

BY C. S. HOO AND M. E. MAHOWALD

Communicated by W. S. Massey, February 1, 1965

Paechter [7] made some computations of $\pi_{k+p}(V_{k+m,m})$ where $V_{k+m,m}$ is the Stiefel manifold of m frames in k+m space. In this note we give a table (Table 1) extending his results in the case where m is large. Since $V_{k+m,m} \rightarrow V_{k+m+1,m+1} \rightarrow S^{k+m}$ is a fibering it is clear that $\pi_{k+p}(V_{k+m,m})$ depends only on k and p for $p \leq m-2$. This is called the stable range and we feel that these stable groups are the most important ones. On the other hand for small values of m, one of us [4] has made extensive computations and the results are available.

James' periodicity [5, Theorem 3.1] is reflected in the table but the basic periodicity of period 8 is also present.

In [1] it is proved that if n > 12, then $\pi_j(SO(n)) = \pi_j(SO) + \pi_{j+1}(V_{2n,n})$ for j < 2n-1. Hence it is easy to deduce the first fourteen nonstable groups of SO(n) from this table.

Tables of homotopy groups are much more useful if generators are given. Instead of generators we settle for giving the order of the image of $i_*: \pi_{k+p}(S^k) \to \pi_{k+p}(V_{k+m,m})$ (Table 2). One can construct the generators from this information and this map has important connections with Whitehead products [2].

The groups have been computed by using modified Postnikov towers [6]. An outline of the computation for one case, 6 mod 32, is given. The case $k \equiv 6 \mod 32$. This procedure is essentially the same as the Adams spectral sequence method.

Let k=32n+6 and we suppose m is large. Consider the fibering $V_{32n+6,7} \rightarrow V_{32n+m,m+1} \rightarrow V_{32n+m,m-6}$. We are only interested in groups in the homotopy stable range so that we can construct a new fibering

$$\Sigma^{-1}V_{32n+m,m-6} \to V_{32n+6,7} \to V_{32n+m,m+1}$$

We will build the modified Postnikov tower to this fibering. By [3] the cohomology of $V_{32n+m,m+1}$ is given by

$$H^{i}(V_{32n+m,m+1}; Z_{2}) = 0,$$
 $0 < i < 32n - 1.$
= $Z_{2},$ $32n - 1 \le i \le 32n + m - 1.$

Let h_i generate $H^i(V_{32n+m,m+1}; Z_2)$ when it is nonzero. Then Sq^ih_i

¹ This research was supported by a grant from the U. S. Army Research Office (Durham).

 $\pi_{k+p}(V_{k+m,m})$ for m large and $k \equiv i \mod 8$ except as otherwise noted

		74+p/	##+p(/ #+m,m) 101 m laige alid m = * mod o cacepe as cuits wise modes	חות ע – א חוו	o carept as o	TICE WISC TIOCO		
/	0	ı	23	က	4	ည	9	2
0	Z	\mathbf{Z}_2	Z	\mathbf{Z}_2	Z	Z_2	Z	\mathbf{Z}_2
1	Z_2^2	\mathbf{Z}_2	Z_4	0	\mathbb{Z}_2^2	Z_2	Z4	0
2	\mathbb{Z}_2^2	Z_8	0	\mathbf{Z}_2	${f z_2}^2$	z_8	0	$\mathbf{Z_2}$
က	$Z_8^{2+}Z_3$	\mathbf{Z}_2	Z_4 + Z_3	Z_2^2	$Z_{4}^{+}Z_{16}^{+}Z_{3}$	3 Z ₂	$Z_{4}^{+}Z_{3}$	\mathbf{Z}_2
4	\mathbf{Z}_2	0	\mathbf{Z}_2	Z ₁₆	\mathbf{Z}_2	0	0	Z_8
տ	0	Z_2	z_{16}	\mathbf{Z}_2	0	0	Z_8	\mathbb{Z}_2
9	\mathbb{Z}_2^2	Z_2Z_{16}	Z_2^2	Z_2	0	$\mathbf{z}_{\mathbf{g}}$	Z_4	0
0 ~ 8	$0(16) Z_{16}^{2} + Z_{2} + Z_{15}$ $8(16) Z_{32} + Z_{8} + Z_{2} + Z_{15}$	Z ₂ 3	$Z_{16^{+}Z_{2}^{+}Z_{15}}$	$\mathbf{Z_2}$	Z ₁₆ +Z ₄ +Z ₁₅	$^{2}_{15}$	$Z_{16^{+}Z_{12}}$	$Z_{16}^{+}Z_{15}^{-7(16)}Z_{2}^{2}$ 15(16) Z_{2}^{-15}
	2,5	Z,4	72	Zº	Z.4	Z,3	6(32) Z ₄ Z ₂ 22(32) Z ₄ ²	6(32) Z ₄ Z ₂ 7(16) Z ₂ Z ₃₂ 2(32) Z ₄ ² 15(16) Z ₁ , Z ₂
	N	N	7	0	4	4	14(16) Z ₄	7 07
						$5(32) Z_2^2 Z_4$	$6(32) Z_2 Z_{32}$	
0	\mathbb{Z}_2^7	$\mathbf{Z_8Z_2}$	Z_8	Z_2^2	Z ₂ 5	$21(64) Z_2^+ Z_4^2$ 53(64) $Z_2^+ Z_4^+ Z_8$	$22(32) Z_2 Z_{64}$	Z_2^3
						13(16) $Z_2 Z_4$	$^{14(16)}\mathrm{Z}_{2}\mathrm{Z}_{16}$	

$\begin{array}{cccccccccccccccccccccccccccccccccccc$				4(32) Z ₂ Z ₃ 5(32) Z ₃₂	5(32) Z ₃₂		
$Z_8^{2+}Z_{63}$	Z ₈	$\mathbf{z_{3}}$	Z_2^2	20(64) $Z_2^3 Z_{12}$ 21(64) Z_{64} 52(64) $Z_2^3 Z_8 Z_3$ 53(64) Z_{128} 12(16) $Z_2^3 Z_3$ 13(16) Z_{16}	21(64) Z ₆₄ 53(64) Z ₁₂₈ 13(16) Z ₁₆	Z_2Z_3	Z ₂
	0	.Z ₈ +Z ₆₃	$3(32) Z_2^3$ $19(64) Z_2^2 Z_4$ $51(128) Z_2^2 Z_8$	$4(32) Z_8 + Z_{32} + Z_{63}$ $20(64) Z_8 + Z_{64} + Z_{63}$ $52(128) Z_8 + Z_{128} + Z_{63}$	^{-Z} 63 ^{-Z} 63 3 ⁻ Z63 ⁻ Z2	$ m Z_2^2 Z_8$	$Z_2^2 Z_8 - Z_2 Z_8$
			115(128) ${z_2}^2 z_{16}$ 11(16) ${z_2}^2$	115(128) $Z_2^2 Z_{16}$ 116(128) $Z_4^+ Z_{256}^+ Z_{63}$ 11(16) Z_2^2 12(16) $Z_8^+ Z_{16}^- Z_{63}^-$	5 ⁺ Z ₆₃ +Z ₆₃		
		$2(32) Z_2^2$	3(32) Z ₃₂		d		
	0	$18(64) Z_2 Z_4$	19(64) Z ₆₄	$\mathbf{Z_2}$	Z_2^2	$^{2}_{8}$	$\mathbf{z_8}$
		$\cdot 50(128) \mathrm{Z_8Z_2}$	$51(128) Z_{128}$				
		$114(128) \ Z_2 Z_{16}$	$115(128)$ Z_{256}				
		$10(16) Z_2$	11(16) Z_{16}				
$\frac{1(32)}{17(64)} \frac{Z_2}{Z_2}$	Z_2^2 Z_2Z_4	1					
13 Z_3 49(128) $Z_8 Z_2$	² 8 Z ₂	$50(128) Z_{128}^{+}Z_{3}$	\mathbf{Z}_2	$\mathrm{Z}_2^{2+}\mathrm{Z}_3$	z_8	$Z_{8}^{+}Z_{3}^{-}$	0
$113(128) Z_2 Z_{16}$	² 2 ² 16	$114(128) Z_{256} + Z_3$					
9(16) Z ₂	.57	$10(16) Z_{16}^{+}Z_{3}$					

=

6

22(32) ------7

15

2 0

2 0 0

2 | 16

0

4

0

				10	p rov	v is ti	ne na	me or	tne	stem					
n(8)	ι	η	η2	ν	ν2	σ	e	V	ησ	ηε	η	$\eta^2\sigma$	μ	ημ	\$
0	∞	2	2	8	2	16	2	2	2	2	2	2	2	2	8
1	2	2	2	2	2	2	2	2	2	0	2	2	2	2	0
2	∞	2	0	4	2	16	0	2	2	0	0	0	2	0	4
3 115(128)	2	0	0	2	2	2	0	0	0	0	0	0	0	0	0 2
4	8	2	2	8	0	16	2	2	2	2	0	2	2	2	8
5 53(64)	2	2	2	2	0	2	2	2	2	0 2	0	0 2	2	2	0

Table 2

Order of $\operatorname{im}(i_*\pi_j(s^n) \to \pi_j(V_{2n,n}))$ Top row is the name of the stem

= $\binom{4}{3}h_{i+j}$. Hence the cohomology of the base space is given by $h_{32n+1} = Sq^{i+1}h_{32n-1}$. We let $h_{32n-1} = h$.

2 2 0 0 0 0 0 2 0

2

Ist level. Over the Steenrod algebra the basis for ker p^* is given by $\{Sq^7h, Sq^8h, Sq^{16}h\}$. Of these three only the first two can be spherical in the sense of [6]. Indeed using $i: V_{k+m,m} \to BSO(k)$ each class in $\pi_j(V_{k+m,m})$ represents a k-plane bundle over S^i which becomes trivial when summed with a trivial m-plane bundle. It is also easy to see that the bundle is a framed tangent bundle of S^i if and only if the cohomology map is nontrivial. Since the 15+32n sphere has only an eight field, $Sq^{16}h$ is not spherical. It is useful to kill it anyway but one has to be careful and identify the element at a later stage which is produced because of this.

2nd level. Consider the following fibering

$$K_1(Z, 32n + 5) \times K_2(Z_2, 32n + 6) \times K(Z_2, 32n + 14)$$

$$\stackrel{i}{\longrightarrow} E^1 \stackrel{q}{\longrightarrow} V_{32n+m,m+1}$$

with k-invariants Sq^7h , Sq^8h and $Sq^{16}h$.

Table 3 $\text{A modified Postnikov tower for } V_{k+m,m}, \, k \! \equiv \! 6(32), \, m \, \text{large}$

-	والمراجع المراجع المرا						neri (li de lega e e.				- المراجعة								,	$\zeta_3 s_q^{3} \xi_3 + s_q^{4,2,1} \xi_1 \mid \lambda_2 s_q^{1} \zeta_3 + s_q^{4,1} \zeta_1 \mid N_1 s_q^{1} \lambda_2 + s_q^{2,1} \lambda_1$
														$ \lambda_1 s_1^{-1} \zeta_2 + s_1^{2,1} \zeta_1^{-1}$						$ \lambda_2 s_1^1 \zeta_3 + s_4^{4,1} \zeta_1$
											$\zeta_1 \mathrm{Sq}^1 \epsilon_2 + \mathrm{Sq}^{2,1} \epsilon_1$			$\zeta_2^{\mathrm{Sq}}\epsilon_3+\mathrm{Sq}^{4,1}\epsilon_1$						ζ3Sq ³ ε3+Sq ^{4,2,1} ε1
							$\epsilon_1 \mathrm{Sq}^1 \delta_2 + \mathrm{Sq}^{2,1} \delta_1$				$\epsilon_2 \mathrm{Sq}^1 \delta_4 + \mathrm{Sq}^{2,3} \delta_1$			$\epsilon_{3} Sq^{3,1} S_{3} + Sq^{7:4,2,1} S_{1} \left \zeta_{2} Sq^{4} \epsilon_{3} + Sq^{4,1} \epsilon_{1} \right \lambda_{1} Sq^{1} \zeta_{2} + Sq^{2,1} \zeta_{1}$						
					$\delta_1 \operatorname{Sq}^1 \gamma_2 + \operatorname{Sq}^{2,1} \gamma_1$		$\delta_2 \operatorname{Sq}^1 \gamma_4 + \operatorname{Sq}^{2,3} \gamma_1$		δ_3 Sq $^1\gamma_5$ +Sq $^{2,1}\gamma_3$	$+ \operatorname{Sq}^4 y_2 + \operatorname{Sq}^6 y_1$	$\delta_4 \text{Sq}^1 \gamma_7 + \text{Sq}^{2,3} \gamma_2$			$\delta_5 \mathrm{Sq}^{2,1} \gamma_8 + \mathrm{Sq}^{3,1} \gamma_6$	$+8q^4y_5+8q^{5+4,1}y_4$	$+Sq^6\gamma_3+Sq^{8,1+6,3}\gamma_1$	$\delta_6 Sq^1 \gamma_{10} + Sq^2 \gamma_9 + Sq^4 (\gamma_7 + \gamma_8)$	$+ \text{Sq}^{3,1} \gamma_8 + \text{Sq}^{5,2+4,2,1} \gamma_3$	$+ Sq^{8}\gamma_{2} + Sq^{8,2+10+9} \cdot 1\gamma_{1}$	
			eta_2 sq 4a_2 +sq 3a_2 $\left \gamma_1$ sq 1eta_2 +sq 2 , 1eta_1		$\gamma_2 \mathrm{Sq}^1 \beta_3 + \mathrm{Sq}^{2,3} \beta_1$	$\gamma_3 sq^1 \beta_4 + (sq^4 + sq^{3,1}) \beta_2 + sq^6 \beta_1 + sq^2 \beta_3$	$\gamma_4 \mathrm{Sq}^1 \beta_5 + \mathrm{Sq}^{2,3} \beta_2$	γ_5 Sq ⁴ β_3 + Sq ^{6,2} β_1	$\gamma_6 Sq^1 \beta_6 + Sq^2 \beta_5 + Sq^4 \beta_3$	$+5q^3\beta_4+5q^{4,2}\beta_2+5q^8\beta_1$	$^{Z_{2}Z_{32}}_{2}$ $^{J_{3}}_{3}$ $^{\beta_{7}Sq^{1}a_{3}+Sq^{8,1}a_{2}}_{2}$ $^{\gamma_{7}Sq^{1}}\beta_{7}+Sq^{4,1}\beta_{3}+Sq^{7,2}\beta_{1}$	γ_8 Sq ⁴ β_4 +Sq ⁶ , $^3\beta_1$ +Sq ⁷ β_2		$\gamma_9 Sq^2 \beta_8 + Sq^3 \beta_7 + Sq^{3,1} \beta_6$	$+ sq^{4*2}\beta_4 + sq^{9+8*1}\beta_2 + sq^{8*3}\beta_1 + sq^4\gamma_5 + sq^{5+4*1}\gamma_4$		$\beta_9 \mathbf{Sq^4} a_3 + \mathbf{Sq^{8,4}} a_2 \Big \gamma_{10} \mathbf{Sq^1} \beta_9 + \mathbf{Sq^{2,1+3}} \beta_8 + \mathbf{Sq^4} \beta_7 \\ \Big \delta_6 \mathbf{Sq^1} \gamma_{10} + \mathbf{Sq^5} \gamma_9 + \mathbf{Sq^4} (\gamma_7 \gamma_8) \\ \Big $	$+ s_q^{4,1} \beta_6 + s_q^{4,2,1} \beta_4$	+ Sq ^(8+7,1+6,2) ,33	
	$a_2 \beta_1 Sq^1 a_2 + Sq^2 a_1$		β_2 Sq ⁴ a_2 +Sq ³ a_2		eta_3 Sq $^{4,1}a_2$	B4Sq4+2a2	$eta_5^{\rm Sq}{}^8a_1$		$\beta_6 Sq^8 a_2$		$\beta_7 \mathrm{Sq}^1 a_3 + \mathrm{Sq}^{8,1} a_2$		$\beta_8 \mathrm{Sq}^2 a_3 + \mathrm{Sq}^{8*2} a_2$				$\beta_9 \mathrm{Sq}^4 a_3 + \mathrm{Sq}^{8,4} a_2$			
Z	Z4 a2	•	Z4	•	Z ₈	z *	2 ₁₆		Z4Z2		Z2Z32 33	TT	Z_2	$z_2^2 z_8$			Z ₈			Z ₈

PROPOSITION. A class $v \in H^i(E^1, \mathbb{Z}_2)$ such that $v \in \text{im } q^*$ and $j \leq 64n-3$ satisfies: $i^*\nu = \sum_{i=1}^3 \beta_i \alpha_i$ where α_i is the fundamental class of K_i and β_i is an element of the Steenrod algebra such that $\beta_1 Sq^7 + \beta_2 Sq^8 + \beta_3 Sq^{16}$, as an element in the Steenrod algebra, has only classes of length 2 or more in its Cartan basis representation.

Using this representation of $H^*(E^1)$ it is now just a lengthy but straight forward computation to verify that the classes in Table 3, column 2 do form a basis over the Steenrod algebra for $H^{i}(E^{1})$ if $32n+7 \le j \le 32n+21$.

3rd level. Consider the fibering

$$\prod_{i=1}^{9} K_i(Z_2, n_i) \to E^2 \to E^1$$

with k-invariants given by Table 3. We use β_i to represent also the fundamental class of K_i . The value of n_i can be inferred from the table. Consider the diagram

$$H^*(E^2) \xrightarrow{i_2^*} H^*(\pi K_i(Z_2, n_i)) \xrightarrow{\delta^*} H^*(E^2, \pi K_i)$$

$$\searrow \qquad \uparrow \simeq$$

$$T \xrightarrow{i_1^*} H^*(K_1 \times K_2 \times K_3)$$

PROPOSITION. A class $\nu \in H^{j}(E^{2})$, $7 \le j-32n \le 21$, is defined uniquely by a sum $\sum_{i=1}^{9} a_i \beta_i$ satisfying:

- (1) $i_2^* \nu = \sum_{i=1}^9 a_i \beta_i$ and (2) $\sum a_i (i_1^* \tau \beta_i) = 0$.

This is a special case of 3.3.4 of [6].

Using this proposition the cohomology of E^2 in the interesting range can be computed. Another lengthy computation shows that column 3 of Table 3 is a basis over the Steenrod algebra for $H^{j}(E^{2})$, $7 \leq j-32n$ ≦21.

4th and higher levels. The computations are made as in the third level, using 3.3.4 of [6]. Nothing unusual happens. The class corresponding to $\gamma_6 + \delta_5$ is the extraneous class produced by killing $Sq^{16}h$. This follows from Toda [8]. It is amusing to note that the formula of Adams [0]

$$Sq^{16} = \sum a_{i,j,3}\phi_{i,j}$$

with coefficients, for example, $a_{3,3,3} = Sq^1$ and $a_{1,3,3} = Sq^7 + Sq^4Sq^2Sq^1$, essentially given by γ_6 .

BIBLIOGRAPHY

- 0. J. F. Adams, On the non-existence of elements of Hopf invariant one, Ann. of Math. (2) 72 (1960), 20-104.
- 1. M. G. Barratt and M. E. Mahowald, The metastable homotopy of O(n), Bull. Amer. Math. Soc. 70 (1964), 758-760.
 - 2. ——, The metastable homotopy of S^n (to appear).
- 3. A. Borel, La cohomologie mod 2 de certains espaces homogenes, Comment. Math. Helv. 27 (1953), 165-197.
- 4. C. S. Hoo, Homotopy groups of Stiefel manifolds, Ph.D. Thesis, Syracuse University, Syracuse, N. Y., 1964 (mimeographed notes, Northwestern University).
- 5. I. M. James, Cross-sections of Stiefel manifolds, Proc. London Math. Soc. 8 (1958), 536-547.
- 6. M. E. Mahowald, Obstruction theory in orientable fiber bundles, Trans. Amer. Math. Soc. 110 (1964), 315-349.
- 7. G. F. Paechter, The group $\pi_r(V_{n,m})$. I, Quart. J. Math. Oxford Ser. 7 (1956), 249-268.
 - 8. H. Toda, Vector fields on spheres, Bull. Amer. Math. Soc. 67 (1961), 408-412.

University of Illinois and Northwestern University