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Introduction. Let £2 be a bounded, smoothly bounded open subset 
of Rn (or of a differentiate manifold), ƒ and g two real-valued func­
t i o n a l of the form 

(1) ƒ(«) =fF(x,u,.--,D~-Ht)dx, 

(2) g(u) = ƒ G(x, « , • • • , L^u) dx, 

defined for r-vector functions u on Q. Let A and B be the Euler-
Lagrange systems for ƒ and g respectively, i.e. 

(3) Au= £ (-iy«D«FPa(x,u, • . . , D - 1 « ) , 
\a\am—1 

(4) £w = £ (-l)i«iD«G fc(*, « , - • - , rru). 

In a preceding note [3], we observed that under assumptions of 
polynomial growth on F, G, FPa, and GPa in u and its derivatives, 
ellipticity and positivity for B, and positivity for A, there exists an 
eigenf unction of the pair (A, B), i.e. a solution u of the equation 
Bu=\Au with X in R1, with f(u) prescribed and u satisfying a null 
variational boundary condition corresponding to a given closed sub-
space V of a Sobolev space TFm»p(Q). 

I t is our object in the present note to summarize the principal re­
sults of the writer's paper [5], where it is shown that if in addition ƒ 
and g are even functionals of u% then there exist an infinite number of 
distinct eigenf unctions Uj with g{uJ)=c1 prescribed. This result is 
based in turn upon the estimation from below of the number of criti­
cal points of a real-valued function ƒ on an infinite dimensional Fin-
sler manifold M in terms of the Lusternik-Schnirelman category of M. 

1. Let M be an infinite-dimensional manifold of class C2 modelled 
on the reflexive Banach space B (cf. [7], T(M) and T*(M) the tangent 
and cotangent spaces of M, respectively. 

A Finsler structure on M is a function p: T*(M)—KR1 such tha t p 
1 The preparation of this paper was partially supported by N.S.F. Grant GP 

3552. 
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is an uniformly convex norm on each cotangent space 7^, which is 
equivalent to the B* norm. Let po be the dual norm function on 
T(M). Then p is said to be smooth if there exists a mapping j of T(M) 
into T*(M) for which 

<",.ƒ(«)> = po(u)p(j(u))} p(J(u))1= po(u), 

with j locally Lipschitzian on the complement of the zero section in 
T*(M). A Finsler structure defines a metric on M by letting 

d(x,y) = iid f p*(x'(t))dt, 
c Jo 

where C runs through curves C: I^>M with C(0) =x, C(l) =y. M is 
said to be complete with respect to p if it is complete in the induced 
metric. 

DEFINITION 1. Let f be a real-valued C1 f unction on M,f' the corre­
sponding section of T*(M). Then ƒ is said to satisfy condition (C) if on 
each closed subset N of M on which \f\ is bounded with N containing no 
critical points of f, we have p(J,(x))'^do>0 for some constant do and 
all x in N. 

Condition (C) was applied to the study of the Morse theory on 
infinite-dimensional Riemannian manifolds by Palais and Smale [ l l ] , 
[12], [ l4] and to Lusternik-Schnirelman category on Riemannian 
manifolds by J. T. Schwartz [13]. In [5], we connect up condition 
(C) with ellipticity or monotonicity conditions applied by the writer 
to nonlinear elliptic boundary value problems in [ l ] , [2], [4]. 

DEFINITION 2. Let 

cat(Af) = sup {cat(iT, M) | K a compact subset of Af}, 
* K 

where cat(2£, M) is the least number s of closed subsets {Ki, • • • , K9) 
of K such that K = U$ Kj and each Kj is contractible over M. 

THEOREM 1. Let p be a smooth Finsler structure on the C2 manifold 
M with M complete with respect to p. Suppose that ƒ is a real-valued C2 

function on M with f bounded from below on M and satisfying condition 
(C). Then if n(J) is the number of distinct critical points of f on M, we 
have cat* (M) ^ n(f). 

Theorem 1 is a variant of results in Banach spaces obtained by 
Lusternik and others in the Russian literature (cf. [ó], [8], [15]) and 
for Riemannian manifolds by Schwartz [ l3] .2 

1 Added in proof, A more general result than Theorem 1 without the assumption 
of uniform convexity on the modelling space has been given by R. Palais in his 
Brandeis Lecture Notes of 1964-65. 
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We apply and specialize Theorem 1 to obtain the following general 
result on eigenvalues of gradients in Banach spaces. 

THEOREM 2. Let X be an uniformly convex Banach space of infinite 
dimension with C2 norm on its unit sphere. Let f and g be two real-valued 
even functions on X of class C2 on X — {o} with f bounded from below 
on X and g bounded on some sphere {x\\\x\\=do}. Suppose that all of 
the following conditions hold f or \\x\\*zd0: 

(a) For any set N where g(x) is bounded, there exists c0>0 such that 
(g'(x),x)ï:co\\g'(x)\\2:4,xeN. 

(b) For any set Ni on which f and g are bounded, there exists C\ such 
that j (ƒ'(*), *>| gci(g'(x)> *), *€Ni. 

(c) If N2 is a set on which ƒ and g are bounded, f(N2) is precompact 
in X. 

(d) For each ikf>0, there exists a compact map CM of X and a 
continuous strictly increasing real function CM on R1 with CM(0)=0, 

such that for g(x) =g(y) = M, f(x) ^ M, f(y) S M, we have 

IkC*) - S'GOII + \\CM(X) - Cu(y)\\ ^ CjfCH* - y||). 

Then there exists a constant c2 such that f or each c with c^c2, there 
exists an infinite sequence of distinct Xj in X with g(x3) =cfor which 

ƒ'(*;) = X;g'(*;), A / G * 1 . 

2. We now let X be a closed subspace of a Sobolev space Wm»p(Q) 
with p^2, and assume the following bounds on F, G, Fa^Fp^ 
(*<* = k> a > fafi == ? <pa<p , bap

 == ^PQPQ • 

(5) 
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with 

qa = np(n + p(m - | a | ))~1, 

Ça? ^ qp(qa — tyqâ1 (equality only f or \ a\ = \p\ = m), 

qapy Û qy(l - qâ1 - qf1), 

T(Ö= {««I I «I < * * - ^ j , 
A a continuous function of x and w for x £ Û . 

Let 

a(w, v) = f 1 3 <^«(*> *,••", ^ m ~ 1 « ) , #«*>(*)> <**, 

ô(w, Î;) = I X) <G«(#, # , - • • , Dww), £>«*;) dx. 

J \a\sm 

Then we have: 

THEOREM 3. Suppose that ƒ is bounded from below, ƒ and g even, and 
in addition to the above conditions, the following three conditions hold: 

(i) There exist do>0, c0>0, such that 

b(u} u) ^ co for ||ft|| è do, « G X. 

(ii) T/tere existe a positive continuous function Ci on R1 such that if 
g(u)^N,f(u)^N,then 

| a(u, u) | è d(N). 

(iii) F(?r eacA N> 0, /ftere existe a continuous strictly increasing func­
tion CN on R1 with c^(0) = 0 swcft tóa/ 

£(#, « — v) — b(v, u — v) ^ c#(||« — v||)||« — »|| 

/öf aZZ u and v in Xfor which ||w||, ||i;||, /(w), ƒ(#) all are £N. 
Then for some positive constant c2 and each c ^ c2, there exists an 

infinite sequence of distinct u3- in X with 

*(*/) = c 

such that for all v in X, and certain Xy in R1, 

a(uj} v) = \jb(uh v). 

Forms of Theorem 3 with condition (iii) replaced by an ellipticity 
hypothesis in the stricter sense of being dependent only upon the 
highest order derivatives are given in detail in [5]. 
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