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This paper, an outgrowth of the author's doctoral dissertation,2 pre­
sents a necessary and sufficient condition, of a cohomological nature, 
for a measure space to be localizable in the sense of Segal.3 In order 
to state the main theorem, we must fix some terminology and estab­
lish some notation. 

1. Definitions.4 A measure space (Xt R, m) consists of a set X, a 
boolean ring R of subsets of Xt and a finite, nonnegative, finitely 
additive measure m on R subject to the requirement: 

( & e i ( » = i , 2 , . . . u r i û s i 2 f M t ) , 
2nra(£n) < oo, E = U En) =» {E G R and m(E) = J^nm(En)}. 

n 

If (X, Rt m) is a measure space, a subset K of X is measurable if 
KC\EÇiR whenever EQ,R\ it is null if it is measurable and m{KC\E) 
= 0 whenever EÇ^R. The measure ring 3TC of the measure space 
(X, R, m) is the quotient of the (sigma ring of) measurable sets by 
the (sigma ideal of) null sets. A measure space is localizable if its 
measure ring is complete as a partially ordered set. 

2. Let (X, R, m) be a measure space. Consistent use will be made 
of the following notation : 

/ : the ideal of sets KÇzR for which m(K) = 0; 
Mi: the sigma ring of measurable sets; 
XR: the set ORG Mi; 
M: the principal ideal of Mi determined by XR; 
Ni: the sigma ideal of null sets in Mi; 
N: the sigma ideal of null sets in M, i.e., MC\Ni\ 

1 Research supported partly by the Air Force Office of Scientific Research under 
contract AFOSR 520-64 and partly by the National Science Foundation under grant 
NSF GP-2432. The author takes this opportunity to thank I. Kaplansky and D. M. 
Topping for their helpful interest in this work. Further details and related results will 
appear elsewhere. 

2 F. E. J. Linton, The f tinctorial foundations of measure theory, Columbia Univ., 
New York, 1963. 

8 1 . E. Segal, Equivalences of measure spaces. Amer. J. Math. 73 (1951), 275-313. 
4 This is merely a restatement, for the convenience of the reader, of parts of 

Definitions 2.1,2.2,2.4, and 2.6 in the cited work of Segal. Incidentally, our rings need 
not have unit elements. 
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r: the countably additive measure on Mi denned by r(K) 
= sup#6i2 m(KC\E). 

3. The following observations are easily verified.6 

(3.1) For K<EMU r(K) =0 ifî KGNL 
(3.2) Every subset of X disjoint from XR is null. 
(3.3) r and m take the same values on R. 
(3.4) m^Mt/Nx^M/N. 

4. The obstruction. Let J be an ideal in a boolean ring A. Since 
the intersection of an element of J" with an element of A is again an 
element of J , we may consider J as a sub-^4 -module of the A -module 
A ; in consequence, we may also think of the quotient ring A /J as an 
A -module—this A -module structure on A/J is the same as that in­
duced from the natural (A/J)-module structure by change of rings 
using the canonical projection A—>A/J. Let (IA,J denote the connect­
ing homomorphism6 

dA,j: Honu(,4, A/J) -» Extl(A, J) 

between the group of A -module homomorphisms A—>A/J and the 
group of A -module extensions 0—>/—>?— 4̂—»0. We call (LAJ the ob­
struction to the localizability of the boolean ring A over its ideal J, If 
dA,j = 0, we say A is localizable over J. 

5. Main theorem. The measure space (X, R, m) is localizable if and 
only if the obstruction dnj to the localizability of R over I vanishes. 

I t is to be noted that no question of higher obstructions arises. 

6. The ring fiA. The proof of Theorem 5 depends on information 
regarding the largest boolean ring fiA containing a given boolean 
ring A as a dense ideal.7 The uniqueness of fiA is due to the fact 
that its Stone space must be the Stone-Cech compactification of the 
Stone space of A. Its existence is demonstrated by proving that the 
clopen sets in that compactification have the desired property. Alter­
nate equivalent descriptions of (3 A are: 

(6.1) (SA is the ring of clopen sets in the Stone space of A {A ap­
pears as the ring of compact open sets) ; 

(6.2) if A is represented as a ring of subsets of a set Z, then 
&A*È{Y\YÇ\}A, Y^aGA for all aG^}; 

6 Consult Segal, op. cit., for proofs of (3.1) and (3.3); the proof of (3.2) is immediate, 
and (3.4) follows from the rest. 

6 Cf. S. Mac Lane, Homology, p. 74, Springer, Berlin, 1963. 
7 Some of the material presented in §6 is contained in §1.10 of the author's disser­

tation. 
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(6.3) j8^4=Hom,i(i4, A) (the ring of A -module endomorphisms of 
A); 

(6.4) PA is the inverse limit of the inverse system 

({^4o}oGA, \pa,b' Aa-*Ah}a±b) 

of all principal ideals Aa= {x \x^a] of A, where pa,b(x) = x/\b. 

7. The main lemma. If / is an ideal in the boolean ring A, the 
canonical projection A—>A/J induces three maps 

HomA(A, A/J) <- H o n u U / / , A/J) 
(7.1) î Î 

Honu(i i , A) -> Hom^/ j (^ / / , A/J) 

by covariant composition, contravariant composition, and change of 
rings, respectively. The second and third maps are isomorphisms. 
The indicated inverse composite is easily seen to be a unitary ring 
homomorphism ; this, when combined with the representations (6.3) 
of fiA and $(A/J), yields a distinguished map 

(7.2) fiA->fi(A/J), 

about which the essential information is recorded in the lemma below. 
The first statement of this lemma is clear from the discussion above; 
the remaining statements depend only upon the exactness8 of the 
sequence 

0-» UomA(AyJ) -> KomA(A, A) -» H.omA(A, A/J) — - i E x t l ( ^ , / ) . 

(7.3) M A I N LEMMA. The map (7.2) is a boolean homomorphism. In 
the representation (6.3), its kernel is given by HomA(A, / ) ; using (6.2), 
instead, its kernel is the family 

J = {Y\YQ\jA,Yr\aGJ f or all a E A} • 

Moreover, the induced monomorphism (îA/J-*fi(A/J) is an isomor­
phism if and only if A is localizable over J. 

8. Although (7.3) is the main tool used in the proof of Theorem 5, a 
few simple observations must be made before it can successfully be 
applied. Namely, let (X, R, m) be a measure space. Then: 

(8.1) M^ÉpR (conséquence of (6.2)); 
(8.2) N^l (consequence of (7.3)); 
(8.3) M^R/I (consequence of (3.4), (8.1), (8.2)); 
8 Cf. Mac Lane, loc. cit. 
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(8.4) R/IQWIQP(R/I) (consequence of (3.3), (7.3), (8.3)); 
(8.5) P(R/I) is complete (consequence of (6.4), the completeness of 

each principal ideal in R/I, and the fact that each map in the inverse 
system (6.4) is a complete homomorphism). 

9. Proof of Theorem 5. According to Lemma (7.3), when we take 
into account (8.3) and (8.4), a necessary and sufficient condition for 
R to be localizable over I is that the inclusion "MQ^ÇR/I) be the 
identity. If, indeed, this is the identity, (8.5) assures that 9fîl is com­
plete, so that (X, R, m) is localizable. If, conversely, (X, R, m) is 
localizable, 2flZ is complete, and since complete boolean rings are in­
fective,9 the inclusion (MÇ:(3(R/I) admits a retraction p: $(R/I) —>9TC. 
In order to prove <M = ^(R/I), it suffices to know that this retraction 
is one-one. So let bÇift(R/I), and assume b^O. Then b contains a 
nonzero element aÇ^R/I, and, by (8.4), p(a)9é0 (indeed, p(a)=a). 
But p(b)^p(a), since b}za, and so £ (0 )^0 . Thus p is one-one, 
ffl=f3(R/I), and the proof is complete, 

10. Localizability and the dual of L\. Theorem 5 can be used to 
deliver a quick and revealing proof of Segal's theorem10 tha t the 
measure space (X, R, m) is localizable if and only if the usual "inte­
gral of the product" map from the Banach space £«, of (essentially) 
bounded M\ -measurable functions mod iVi-measurable functions to 
the dual of the space Li = Li(X, R, m) is an isomorphism. For by an 
extension of a theorem11 of Sikorski, Lw is isomorphic with the space12 

of bounded Carathéodory functions on Mx/'Ni^Wl^fiR/'I. On the 
other hand, the dual of the space L\ is13 the space of bounded Cara­
théodory functions on fi(R/I), which, because fiR/ÎÇl(3(R/I), con­
tains LM as an isometrically embedded subspace. Consequently, £«, 
is the dual of L\ if and only if these two spaces of Carathéodory func­
tions coincide, and this, in turn, is the case if and only if f3R/I and 
P(R/I) coincide, i.e., using Theorem 5 and Lemma (7.3), if and only 
if (X, R, m) is localizable. 
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• Cf. P. R. Halmos, Infective and projective boolean algebras, Proc. Sympos. Pure 
Math., Vol. 2, pp. 114-122, Amer. Math. Soc. Providence, R. L, 1961. 

10 Segal, op. cit. 
11 R. Sikorski, Boolean algebras, Proposition 32.5, Springer, Berlin, 1960. 
12 Cf. C. Goffman, Remarks on lattice-ordered groups and vector lattices. I. Carathéo­

dory functions, Trans. Amer. Math. Soc. 88 (1958), 107-120. 
13 Theorem (2.5.10) of the author's dissertation. 


