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In this paper we give an outline of the following theorem.1 Full 
details will appear elsewhere. 

THEOREM. If M is an orientable manifold, then there exists a spin 
manifold N such that N is cobordant to MX M (in the unoriented sense), 
(For definitions and notation see [ l ] and [3].) 

Following C. T. C. Wall [S ] we construct a set of orientable mani­
folds whose cobordism classes generate the image of the "orientation 
ignoring homomorphism" r: Q—>%l> and the theorem is then verified 
for each of these generators. 

Some of these manifolds are certain complex projective spaces 
CPn. As was noted in [2], CPnXCPn is cobordant to quaternionic 
projective space HP71. Since HPn is always 3-connected it is a spin 
manifold. 

A second type of manifold used is constructed as follows. Let X 
be the canonical nontrivial line bundle over real projective space P n , 
and em the trivial ra-plane bundle over Pn. Define M(m, n) as the 
space of lines through the origin in each fibre of the Whitney-sum 
bundle A®en. M(m, n) is an orientable manifold if and only if m is 
odd and n is even, and certain of these manifolds are used as gener­
ators for r(Q). 

The third type of manifold used is denoted by 

M (mi, n\\ m2, n2; • • • ; mr+h nr+i), 

where r ^ 1, mi is odd and wt- is even for i = 1, • • • , r + 1 . This manifold 
is the total space of a certain fibre bundle over SlX • • • X S 1 (r fac­
tors), with fibre M(mu »i) X • • • XM(mr+i, nr+i). 

To prove the theorem for these last two types of manifolds we con­
struct their "complex analogues" as follows. Let c\ denote the 
canonical complex line-bundle over complex projective space CPn

t 

and cem the trivial complex w-plane bundle over CPn. Then CM(m> n) 
is the space of complex lines through the origin in each fibre of 
c\©C€m. CM (mi, nr, • • • ; w r+i, wr+i) will be the total space of a fibre 

1 This theorem was originally conjectured by J. Milnor in [2]. 
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bundle over 5 2 X • • • XS 2 (r factors) with fibre CM(mu m)X • • * 
X C¥(«r+i , nr+i). 

If ikf is one of our manifolds we use the following method to verify 
that MX M is cobordant to CM. H*(M; Z2) and H*(CM\ Z2) are 
isomorphic truncated polynomial algebras over Z2, the former on 
several one-dimensional generators and the latter on several two-
dimensional generators. If we represent this isomorphism by D: 
H*(M)-*H*(CM) (note that J9(H*(A0)=ff"(CA0), we may prove 
that D preserves Stiefel-Whitney classes: D(w(M)) ~w(CM). Since 
Wi(M) = 0, Wi(CM) =w2(CM) = 0; hence CM is a spin manifold. 

Let wix • • • wtfc[M] denote a typical Stiefel-Whitney number of M\ 
then by a theorem of Wall [5 ] 

wh • • • wih[M] = wan • • • w2ih[M X M], 

and Wjx • • • Wjh[MXM]=0 if any of the j ' s is odd. Therefore 

wh • • • wiA[M X M] = ze^ • • • wh[CM] 

for any ii, • • • , i&. So by R. Thorn's result [4], ikf X t f is cobordant 
to CM. 
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