A PRIORI ESTIMATES IN SEVERAL COMPLEX VARIABLES!
J. J. KOHN

Classically there are two points of view in the study of global exist-
ence problems in the theory of functions of a complex variable. One
is to piece together local solutions (such as power series), always
staying within the category of holomorphic functions. This method
seems to have been initiated by Weierstrass; in the theory of several
complex variables it has been implemented by the study of cohomol-
ogy with coefficients in the sheaf of germs of holomorphic functions
(more generally in the sheaf of germs of holomorphic sections of vec-
tor bundles). The second approach is to view the Cauchy-Riemann
equations as a linear operator on C* functions and to study this oper-
ator as an operator in Hilbert space; which leads to the Dirichlet
integral and this method was first exploited by Riemann. In the
theory of several complex variables this approach has led to the
theory of harmonic integrals, which have been developed and widely
applied in the compact case and which have recently been extended
to the noncompact case. It is this extension which is the main con-
cern of the present lecture. For simplicity we will deal with functions
on a domain M CC», although the results carry over to forms with
coefficients in holomorphic vector bundles on finite manifolds.

Let 2, .-+, 2® be coordinates in C* and let x*=Re(z*) and
y*=1Im(z*). Then if u is a differentiable function we define #; and

Uszk by
1 (8% V(=1 6u)
Up = —|— — -1) —
* 2 \9x* ay*

and
1 <6u 4 v(=1) 6u>
e = — | — —1) —}).
? 2 \9«x* y*

Thus a function is holomorphic if and only if #x=0, k=1, - - -, n.
Here we are concerned with inhomogeneous equations:
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€)) Uk = oy, k=1,---,n;

or to use the notation of differential forms

1) du = a,

where du= Y uxdz* and a= Y audz". Roughly speaking, we ask the
following question about the system (1): Given a “good” o is there a
“good” u satisfying the above equations?

Before considering this question we will illustrate how an affirma-
tive answer can be used to prove the existence of global holomorphic
functions. Our example is the Levi problem; which is: given P&CbM
(bM denotes the boundary of M) to find a holomorphic function &
which cannot be continued past P (that is, there is no holomorphic
function defined in a neighborhood U of P which equals k in UNM).
In one variable this problem is always trivial, a solution being
(z—P)~!; however, in several variables the problem is far from trivial
and, in fact, it has a solution only under special circumstances., For
example, if M is the region between two spheres, one contained in
the other, then every holomorphic function on M has (by Hartogs’
theorem) an extension to the interior of the larger sphere and hence
if P is a point on the smaller sphere then every holomorphic function
can be continued past P. Suppose that 7 is a real-valued C* function
defined in a neighborhood of bM such that dr=0, 7(Q) <0 when
QE M and 7(Q) >0 when Q& M, then if PEbM the Levi form at P
is the hermitian form

(2) Z rz"if(P) a‘dj)
acting on n-tuples (a!, - - -, @) which satisfy the equation
®) 2 ri(Pyaf = 0.

We remark that the numbers of positive and negative eigenvalues of
the Levi form are independent of the choice of the function » and of
the coordinate system. If all the eigenvalues of the Levi form at P
are positive then there exists a neighborhood U of P and a polynomial
w such that: the only point in UNM at which w is zero is P. This
theorem gives a local solution to the Levi problem; namely, the func-
tion w~! is holomorphic in UNM, but cannot be continued past P.
Observe that w—! does not in general give a global solution since it
may be infinite at some points in M. Now let p be a C® function with
support U which is 1 in a neighborhood of P and let & =9 (pw?). Then
a is “good” in the sense that it is C* on M (in fact it is zero in a
neighborhood of P). Now suppose that there exists a “good” # such
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that du =, so that in particular # is defined at P, then we obtain a
global solution to the Levi problem % by setting #=u—pw~'. Clearly
k=0 and & cannot be continued past P.

Our first observation about the system (1) is that since #zzm = tzmz
we conclude that the components of « satisfy the equation

Ogzm — Ozt = 0

whenever there exists u that satisfies (1). We denote (C*(M))? the
space of p-tuples of complex-valued C* functions on M, we set
Q= C=(M), @'=(C>(M))* and @=(C=(M))"»=vI2, If ER? we
index its components by ordered pairs of integers, i.e., § = (0in), where
1<k<m=mn;0 can also be considered as the 2-form 8= Y _0;,dz*dz™.
Now we define the operator S: @'—@? by

S¢ _ { ¢1¢2m - qu;k if & < m,

4) .
—rzm + Pmzt if &> m.

So that Sa=0 is a necessary condition for the existence of a solution
u of (1). On (C=(M))? we define the Ly-inner product and norm by:

(5) 0,u) =2 fMe,-u,-dV and [|6]|2 = (4, 9),

where dV denotes the volume element. In terms of this inner product
the condition Sa=0 can be expressed by requiring (o, S*§) =0 for all
0 & ®?, where S* is the Hilbert space adjoint of .S and ®? is the inter-
section of @? with the domain of S*. For the above application it
would suffice if we knew that the following orthogonal decomposition
holds:

(6) @' = 9a® ® S*®?,

which is equivalent to the statement that (1) has a solution if and
only if Sa=0.

We will now indicate briefly how (6) is obtained. We denote by 9*
the Hilbert space adjoint of 9 and by ®! the intersection of @! and
the domain of 9*.

The basic estimate. Suppose that M is compact and that it has
smooth boundary given by a function 7 as above; and that, for every
P&bM the Levi form at P either has all eigenvalues positive or it
has at least two negative eigenvalues. Then there exists a constant
C>0 such that:

@ Slewlt+ [ onlas s ol + ol
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for all p&E®?, where d.S is the volume element of M.
Let Q be the hermitian form on ®! defined by

©) (¢, ¥) = (8*¢, 3*Y) + (So, SY¥).
Now if ¢E®! and SpE®?, then
) Q(s, ¥) = (99%¢ + 5*S¢, ¥)

for all y E®L. We remark that Q(¢, ¢) corresponds to the classical
Dirichlet integral. The basic estimate is used to prove that: given
aE @' there exists & ®! such that:

(10) Qe ¥) = (o, ¥)
and this implies that Sp E®? and

(11) 39%¢ + S*S¢ = a.

It should be observed that the above equation, in terms of coordi-
nates, gives:

Z¢kzi;i=ak, k=1,---,mn.
i

Now if for any a& @' there exists ¢ as above, then we obtain the
decomposition:

(12) Q! = do*eC @ S*S¢,

where C= {qu(Bll SpE®?}. Clearly (12) implies the decomposition
(6). Thus our problem is reduced to solving (10).

To solve (10) we first show that the basic estimate implies certain
“a priori” estimates for (10). By an “a priori” estimate is meant a
bound on some norm applied to the solution ¢ in terms of «; that is,
bounds on the assumption that a solution exists. If the basic estimate
holds then for each integer s =0 there exists C,>0 such that:

(13) lloll = Cdlof| and |[l¢]ls = Cllefls if sz 1,

for all §C®! with SpE ®?, where « is given by (11). The norms || ||
are defined by:

(14) leli= = Xl Dl
Jiteetinse k
where
D = {6/690" Hf1=i=mn,
a/dy ifn <1i = 2n.
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The estimates (13) show that ¢ “gains” one derivative. In the
standard theory for boundary value problems of second order elliptic
systems the solution “gains” two derivatives, i.e., one obtains esti-
mates of the form ||¢||. < const ||o]|,—z; such estimates are called coer-
cive, they have been extensively studied and they imply an existence
theorem of the type that we require. In the case of our problem it
can be shown that coercive estimates do not hold; nevertheless, the
problem can be “approximated” by regular problems for which coer-
cive estimates hold and the required existence theorem is obtained
by taking a limit of the solutions of the approximating problems. The
approximating problems correspond to the forms Q. defined by:

(15) Q$,¥) = Q(¢,¥) + ¢ Z;, (D, Dit)

for €>0 and ¢, Yy E®'. Then given a & Q! there exists a unique ¢.E B!
such that:

(16) Qe(¢¢, Y) = (0‘; ¥)

for all y E®L. Furthermore the ¢. satisfy the estimates (13) with con-
stants that are independent of e. It then follows that there is a se-
quence {e}—0 such that {¢.} is a Cauchy sequence in the norm
|| ||+ for every s, hence the limit ¢ is in @' and gives the required
solution.

To conclude we will give the proof of the basic estimate in a special
case.

Proof of the basic estimate when the Levi form is positive definite.
First, by integration by parts we have

6,50) = (=X ot 1) + 3 f rapuads

so that if pE®B! we have

@an D rade = 0 on bM
and
(18) Fd = — D duat

Since Y 7.u¢p, vanishes on bM then at each point of bM its gradient
equals Ndr, where N is a function on bM. Thus differentiating with
respect to 2™ we obtain

2 tamdi + D Taduam = Mram on DM,
k

k
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then multiplying by ¢», summing with respect to # and applying the
conjugate of (17) to the right side, we have:

> rektumibm + Z r3QrznPm = 0

k,m k,m

and since the Levi form is positive definite there exists a constant
such that

(19) —Re D radumdn = const ZI x I"‘.
k,m

Now
[[S¢l[2 = 22 [|dnam — dmatl|?
k<m

20
0 = 3 lourll =  (6umy 6m)

and integrating by parts twice, we have:

Z (¢k§’", ¢mi") = Z (¢kz"y d’mz’”) - Z ¢kzkrim($mds
M

+ 2| ridrndnadS.
oM

Now by (18) the first term on the right equals ][5*¢]|2 and by (17)
the second term vanishes. The desired estimate is then obtained by
substituting this into (20) and applying (19).

Our purpose in the preceding is to introduce the reader to some of
the ideas used in this approach to several complex variables, we have
left bibliographical remarks to the end. Here we give a representative
selection of the recent articles on the topics discussed above. The
Levi problem for domains over C? was first solved by K. Oka (see
Domaines d’'holomorphie, J. Sci. Hiroshima Univ. Ser. A 7 (1937),
115-130). This solution was generalized independently by H. Bremer-
mann, F. Norguet and K. Oka in articles that appeared in 1954. A
solution based on differential equations was outlined by L. Ehrenpreis
in Some applications of the theory of distributions to several complex
variables, Conference on Analytic Functions (1957), 65-79. The prob-
lem for manifolds was solved, using methods of sheaf theory by
H. Grauert in On Levi's problem and the imbedding of real-analytic
manifolds, Ann. of Math. (2) 68 (1958), 460-472.

A variant of the problem described here was first formulated by
P. R. Garabedian and D. C. Spencer in Complex boundary value prob-
lems, Trans. Amer. Math. Soc. 73 (1952), 223-242. The basic estimate
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was established in a special case by C. B. Morrey in The analytic
embedding of abstract real-analytic manifolds, Ann. of Math. (2) 68
(1958), 159-201. The complete solution of the d-Neumann problem
(that is the boundary problem discussed here) for strongly pseudo-
convex manifolds (i.e. when the Levi form is positive definite) was
obtained by the author (see Harmonic integrals on strongly pseudo-
convex manifolds. 1, Ann. of Math. (2) 78 (1963), 112-148; 11, ibid.
79 (1964), 450-472). Those papers also include various applications
including the new solution of the Levi problem outlined here. The
method of approximation by coercive problem is explained in Non-
coercive boundary value problems, J. J. Kohn and L. Nirenberg, J. Pure
Appl. Math. (to appear). The extension of the method to the case of
Levi forms with some negative eigenvalues and other generalizations
and applications were obtained by L. Hérmander in Existence theo-
rems for the 9 operator by L? methods, (to appear). Some of these re-
sults were previously conjectured in the above-mentioned paper by
Enrenpreis and proved by A. Andreotti and H. Grauert in Théorémes
de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math.
France 90 (1962), 193-259.
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