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We have succeeded in showing that a bounded linear transforma­
tion in a Hilbert space always has invariant subspaces. The existence 
of invariant subspaces was previously known only under complete 
continuity hypotheses. 

THEOREM. Let T be a bounded linear transformation in a Hilbert 
space 3C. Let f be a given element of 3C and let h be a given number, 

OShS \\Tf\\\ 

Then there exist projections P+ and P „ into invariant subspaces for T 
such that the range of P+ contains the range of P_, the orthogonal comple­
ment of the range of P „ in the range of P+ has dimension 0 or 1, and 

\\TP-f\\*gh£\\TP+f\\*. 

The proof depends on Livsic's theory of characteristic operator 
functions [8], [9]. A characteristic operator function is an operator 
valued analytic function which is associated with the transformation 
in such a way that invariant subspaces for the transformation cor­
respond to factors of the function. In general, this correspondence is 
only formal. Two technical problems have to be solved to show the 
existence of invariant subspaces. The first is to obtain factorization 
theorems without making a complete continuity hypothesis, and the 
second is to obtain an isometric inclusion for related Hilbert spaces. 
The first problem is solved by using a weak compactness theorem for 
positive definite operator valued functions. The second problem is 
solved by using functions which are analytic across the boundary of 
the unit disk. The theory is formulated in terms of formal power series 
rather than analytic functions. 

We choose and fix a coefficient space. This is a Hilbert space G 
that we treat as a generalization of the complex numbers. The ele­
ments of 6 will be called vectors, and the bounded linear transforma­
tions of 6 into itself will be called operators. The norm of a vector c 
is written | c\. If & is a vector, then b is the linear functional on G 
such that la = (a, b) for every vector a. The adjoint and norm of an 
operator A are denoted by ~K and | ̂ 4 |. 

1 Research supported by the Alfred P. Sloan Foundation and the National Science 
Foundation. 
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Let 6(0) be the Hilbert space of formal power series ƒ(0) = X/Mn , 
with vector coefficients, such that 

11/11* = £KI°<«>. 
Let B(z) be a formal power series with operator coefficients. Suppose 
that when g(z) is in 6(0), B{z)g{z) is in e(z) and ||B(*)g(*)|| â||g(s)||. 
An equivalent condition for this is that B(z) converge and represent 
a function B(w) which is bounded by 1 in the unit disk, \w\ <1 . If 
ƒ(z) is in 6(0), let its 5-norm be defined by 

ii/wiii - «vul/w+*w««if - iifwin. 
where the supremum is taken over all g(z) in 6(0). Let 3C(i3) be the 
set of all ƒ(*) in 6(0) such that | | / (S ) | |B< °°. Then 3e(B) is a Hilbert 
space in the 5-norm. If ƒ (s) is in 3C(S), then [ƒ(*) -/(O)]/* is in 5C(5) 
and 

l|[/W-/(o)]/«Hiâ||/W||i- 1/(0)1'. 
The general case of the spaces 3C(J3) was introduced (in a different 
way) in the second author's thesis [l2J. 

THEOREM 1. Le£ T be a linear transformation in a Hilbert space 3C. 
Suppose that || T\\ S1 and lim || Tw/|| = 0 for every f in 3C. Suppose also 
that the dimension of the range of 1~-T*T is no more than the dimen­
sion of 6. Then T is unitarily equivalent to the transformation f(z) 
~~^[f(2)"~/(O)]/0 in some space 3C(B) which is contained isometrically 
in <3(s). 

Therefore the problem is to determine the spaces 3C(A) which are 
contained isometrically in a given space 3C(J3). This is related to a 
factorization problem. 

THEOREM 2. Let 3C(<4) and 3C(B) be given spaces. A necessary and 
sufficient condition that 3C(A) be contained in 3Q,(B) and that the inclu­
sion not increase norms is that B(z)=A(z)C(z) where the space 3C(C) 
exists. 

When the inclusion fails to be isometric, it is because of an over­
lapping phenomenon. For simplicity, suppose that 5C(5) is contained 
isometrically in 6(0). The problem is to know when 5C(̂ 4) is contained 
isometrically in 6(0). 

THEOREM 3. A necessary and sufficient condition that a space 3C(IS) 
be contained isometrically in 6(0) is that 3Q,(B) contain no nonzero ele­
ment of the form B(z)L(z), where L(z) is in 6(0). 
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A similar situation arises in the study of non-self ad joint trans­
formations (de Branges [4]). There, a Hilbert space is constructed 
from the series which cause the trouble. 

THEOREM 4. Let 3C(B) be a given space. Let £ — £B be the set of power 
series L(z) in <S(z) such that B{z)L(z) is in 3C(B). Then £ is a Hilbert 
space in the norm 

||L(2)||
2

£ = ||i:(2)||
2
 +\\B(Z)L(Z)\\1 

If L(z) is in <£, then [L(z) — L(0)]/z is in £. The transformation L(z) 
—>[L(z) —L(0)]/Z in £ has an isometric adjoint. 

If 3C(B) is a given space, there is a positive definite function 
K(a, j8)(|a| < 1 and |j8| <1) which completely determines 3C(5). 

THEOREM 5. Let 3C(J3) be a given space. If c is any vector and if 
\w\< 1, then 

K(w, z)c = [1 - B(z)B(w)]c/(l - 00) 

belongs to 3C(J3) as a power series in z, and cf(w) = (/(a), K(w, z)c)B 

holds f or every f (z) in 3C(23). If (wt-) is any finite set of points in the unit 
disk y then 

J2 cjK(wi, Wj)d ̂  0 

for all corresponding choices of vectors (d). 

Compactness follows from a characterization of this positive 
definite function. 

THEOREM 6. Let (3C(JBM)) be any sequence of spaces. If the coefficient 
space is separable, there is a subsequence (5C(JSn(A,))) and a space 3C(JB) 

such that cK(a, (S)c = lim cKn(.k)(a, $)c for every vector c when \a\ < 1 
and |]8| < 1 . 

A study of finite-dimensional 3C(J3) spaces now leads to the fac­
torization theorem. 

THEOREM 7. Let 3C(B) be a given space. Let c be a vector and let h be 
a number y 

O ^ H \c\2 - | B(0)c\2. 

If the coefficient space is separable, there exist spaces 3C(^4), 3C(5), and 
3C(C) such that B(z) = A(z)S(z)C(z), 3C(S) has dimension 0 or 1, and 

\c\2 - | A(0)c\2 g h â I c\2 - | S(0)A(0)c\2. 
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A special choice of B(z) is needed to convert this factorization theo­
rem into the existence theorem for invariant subspaces. 

THEOREM 8. Let 3C(J5) be a given space. Suppose that 3C(B) is con­
tained isometrically in 6(2). Suppose that the series which belong to 
3C(J3) converge and represent functions in a disk \w\ <a where a>l, 
and that the transformation f (z)—^f(w) takes 5C(5) continuously into (B 
when I w\ <a. Then 3C(B) is equal isometrically to a space 3CC4), where 
A(z) converges and represents a function A(w) in the disk \w\ <a, and 
A{w) has unitary values on the circle \w\ = 1. 

A complete account will be published elsewhere. 
Added in proof. R. G. Douglas has discovered a gap in the argu­

ment as originally given. To fill it make the following additional 
hypothesis in Theorem 7 and in the necessity for Theorem 2 : multi­
plication by B{z) is isometric in 6(2). The main theorem is un­
changed. 
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