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every nÇzW, including these ergodic ones, because 5 is minimal and 
every fxCzW is ^-invariant, having therefore an invariant support set. 
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Some recent work [2], [3] has led to almost enough knowledge 
about nonnegative symmetric homogeneous quadratic transforma­
tions to merit the name theory. This note presents one interesting 
fact, Theorem 6, which states that in a sense almost all such trans­
formations 3 give rise to a sequence {3°, 31, 32, • • • } of iterates which 
converges pointwise, together with a map of the way stations leading 
to it. There are very few proofs of the intermediate results since, 
taken in their totality, they are the skeleton of the proof of Theorem 
6. The articulation of this skeleton is indicated by the following 
scheme of dependences of theorems and lemmas. 
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Let P be the set of probability ^-vectors in Euclidean w-space Rn 

for some integer n^2 fixed throughout the discussion. P° is the set 
of componentwise positive probability ^-vectors and dP = P — P°. 
Let T be a symmetric entrywise nonnegative n-by-n matrix and de-
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fine the function g: U-+R1 by setting g(rj) == (77, Ty) for each 77 belong­
ing to the set £7= {a£jRw: The sum of the components of a is l } . 
Notice that P is the intersection of U with the nonnegative cone of 
Rn. The symbol (77, Fry) stands, of course, for the real number which 
is the inner (dot) product of the n-vector 77 with the n-vector FT; 
which is the image of 77 under the linear transformation naturally 
determined by the matrix T. A less usual product, the n-vector ^r^, 
is the componentwise product of 77 and Trj. The homogeneous non-
negative symmetric transformation 5:P—»P maps 77 to 77F77/g(77) if 
g(rj) 5^0 and is undefined if g(rj) = 0. Let v be the n-vector all of whose 
components are unity and let 0 be the w-vector all of whose com­
ponents are zero. U$~ {aÇzRn: (a, v) = 0 } is the translate of U which 
contains 0. If T £ U$, rjÇz U the Frechet derivative of g with respect to 
r at 77 is 

drg(V) = lim (g(v + AT) - *(*))/* » 2(r, TV). 

A critical point of g is a point 77GZ7 such that dTg(r)) = 0 for each 
reUe. 

LEMMA 1. If 77 G P ° and g(rj)>0 then 3(77) =77 if and only if rj is a 
critical point of g. 

LEMMA 2. If 77 G P and g(7j)>0 then g(rj) ^g(3(r))) and d^(v)^vg(r]) ^ 0 . 
If j furthermore, 77GP0 each equality is equivalent to the statement that 
77 is a critical point of g. 

The first inequality follows from a recent result [ l ] , the second 
from the Bunyakowsky-Cauchy-Schwarz inequality. The support 
5(77) of 77 is the set of indices of nonvanishing components of 77. g* is 
the restriction of g to the smallest coordinate hyperplane containing 
77 or, in other words, to the set { a G P n : S(a)C.S(rj)}. It is easy to 
see how these lemmas lead to the fundamental 

THEOREM 1. If rjEP and g(rj)>0 then gfa) ^(3(77)), ^50-^(1?) è 0 , 
and the following four conditions are equivalent : 

(0 11 = 3(1?), 
(ii) 77 is a critical point of g', 
(iü) «(i?)=g(3(i?)), 
(iv) dg(,)-tf(i7)=0. 

Note that if 77GP and g ^ ^ O it follows that the sequence 
{v* 3(77), 32(T7), • • • } of w-vectors is well defined and that the associ­
ated sequence {#(77), #(3(77)), g(32(77)), • • • } of positive real numbers 
is in fact monotone nondecreasing. 
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LEMMA 3. Trj = g(r))v if rj is a critical point of g. 

A flat is a translate of a subspace of Rn. g is a cylinder along a flat 
F if it is constant on each translate of F. 

LEMMA 4. If the set FQU of critical points of g is nonvoid it is a flat 
and g is a cylinder along F. 

THEOREM 2. If T is nonsingular there is at most one critical point of g. 

PROOF. If a, /3 are critical points of g then g(a) = g(fi) = g* and 
Ta — Tfi — g*v. If T is nonsingular then a = j8. | 

THEOREM 3. g is constant on each component of the fixed point set of 3. 

a dominates /3 if a T^/3 and a —(3 is a componentwise nonnegative 
^-vector. If T is singular and there are no a, ftÇzP for which Ta 
dominates T/S, call T perfectly balanced. A principal submatrix V* of 
T is one obtained by striking out rows and columns with the same 
indices. Each principal submatrix F* of T must be symmetric since 
T is. If a is a vector in Rn whose support contains n* integers, let 
r * = r (5 (a ) ) be the w*-by-w* principal submatrix of T whose entries 
are those entries of T determined by row and column indices both of 
which belong to S(a). 

THEOREM 4. If X, ju are distinct critical points of gx which have the 
same support S(k) ==5(M) then T(5(X)) is perfectly balanced. 

PROOF. I t suffices to show that T is perfectly balanced if there are 
distinct points X, /x of P° which are critical points of g. Y is singular 
in such a case. If there were a, / J £ J P such that Ta dominates r/3 then 
0<(X, Ta—r]8) = (X, T(a — /?)), which would imply that X is not a 
critical point of g after all. | 

An argument from the continuity of g where it is nonzero and the 
monotonicity of a sequence {g(rj)f g(30?)), g(320?))> • * * } gives 

THEOREM 5. X is a critical point of gx if ' X is a limit point of a sequence 

W z(v)> 32M> • • • }• 
THEOREM 6. If there is no nonzero perfectly balanced principal sub-

matrix T*ofT each component of the fixed point set of 3 is a singleton. 
Thus {?7, 3(rç), 32(rç), • • •} converges at each rjÇzP for which g(ti)>0. 

PROOF. Let X be any fixed element of the component C of 
/ = {rj: 3(r?) =rj}. If M G C then g(/x) =g(X)>0 in consequence of Theo­
rem 3. If C were not a singleton it would be infinite and would there­
fore contain two distinct points a, j8 such that S(a) =5'(j3). The prin-
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cipal submatrix T* = T(S(a)) would have a nonzero entry since 
g(a)=g(X)>0. It would then follow from Theorem 1 that a and j3 
would be critical points of ga and thus from Theorem 4 that T* would 
be perfectly balanced, contrary to assumption. Hence each com­
ponent C of ƒ is a singleton. Let rçGP. Theorem 5, taken in conjunc­
tion with Theorem 1, states that all limit points of {77, 3(77), 32(T7), • • • } 
belong to J. It is not hard to show that {rj, 3(77), 32(rç), • • • } cannot 
have limit points in two different components of I. Thus all limit 
points of {77, 3(77), 32(rç), • • • } lie in precisely one component C of 
/ and C is a singleton. | 

These are highlights of the symmetric homogeneous quadratic 
theory. It has extensions to the theory of differential equations as 
well as more general types of quadratic transformations, to higher 
degree transformations and to the nonnegative nonsymmetric theory 
whose absence Ulam refers to in [4]. In fact the symmetric theory 
plays a crucial role in the more general theory even though there is, 
on the surface, scant similarity [3 ] between symmetric and nonsym­
metric quadratic transformations. [2], [3] and their sequels take 
these topics up in more detail. 
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