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In previous papers [13], [2], [16], [3], [ l l ] , the theory of auto-
morphic functions for some classical discontinuous groups F, such as 
the Siegel or Hilbert-Siegel modular groups, acting on certain bounded 
symmetric domains X, has been developed through the construction 
of a natural compactification of X/T , which is a normal analytic 
space, projectively embeddable by means of automorphic forms. The 
purpose of this note is to announce similar results for general arith­
metic groups, which include the earlier ones as special cases. 

1. For algebraic groups, we follow the notation and conventions of 
[4], [5]. G<ZGL(m, C) will be a semisimple linear algebraic group 
defined over 0 , and, for every subring B of C, we put as usual G# = 
Gr\GL(m, B). We let Y be an arithmetic subgroup of G, i.e., a subgroup 
of GQ commensurable with the group Gz of units of G. The group acts 
on the right, in a properly discontinuous manner, on the symmetric 
space X = K\GRl where K is a maximal compact subgroup of GR. 
Here we assume X to be hermitian symmetric, and therefore [7] 
equivalent to a bounded symmetric domain. The quotient V=X/F 
then carries a natural ringed structure with which it becomes an 
irreducible normal analytic space. 

There is no loss in generality in assuming G to be connected and 
centerless, and we shall do so. Although this is not essential, we shall 
here for simplicity assume that G is simple over 0 , in other words, 
that it has no proper invariant subgroup i W (e) defined over 0 . We 
are, of course, interested here only in the case where F i s not compact; 
this means that GR has no compact factor ^ (e) and that G contains 
a torus S^ie) which splits over 0 [5]. 

2. Rational boundary components. The space X has a "natural" 
compactification, obtained by taking the closure X of X in the 
Harish-Chandra realization of X as a bounded symmetric domain 
[7], [8]. The boundary is then the union of finitely many orbits of 
GR, each of which has a fibration, whose fibers are locally closed 
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analytic subvarieties of the ambient complex vector space, and are 
symmetric bounded domains for certain subgroups of GR [9], [lO], 
[ l l ] . These fibers are the boundary components of X. 

DEFINITION 1. A boundary component F of X is called rational if: 
(i) The complexification 31(F) c of the normalizer 91(F) 
= {gÇzGR\ F'g = F} of F is an algebraic subgroup defined over Q of 
G; (ii) 31(F)c contains a normal subgroup M' defined over Q such 
that MRCZ(F)={g£Vt(F)\x'g = x (xGF)},and that Z(F)/MRis 
compact. 

These conditions imply readily that the image T(F) of 31(F)CW 
in 31(F)/MR is an arithmetic group, acting properly discontinually on 
F. The previous definition can of course be given for any semisimple 
group L over 0 , and a boundary component of the corresponding 
symmetric space Y with respect to any Satake compactification of Y 
[ l4] . I t is then slightly weaker than the definition used in [4, §4]. 
Coming back to X, it is known that its natural compactification (with 
its boundary components) is equivalent to the Satake compactifica­
tion associated to a certain class of representations [lO]. The proofs 
of the results below make strong use of that fact. 

THEOREM 1. The map F—>3l(F)c yields a 1-1 correspondence 
between rational boundary components and proper maximal parabolic 
subgroups defined over Q of G. 

We recall that an algebraic subgroup H of G is parabolic if G/H 
is a projective variety. The theorem implies in particular that, in the 
natural compactification, condition (ii) of Definition 1 is a conse­
quence of (i). This theorem is proved by a rather detailed investiga­
tion of the i?-roots and Q-roots of G, and on how the former restrict 
on the latter, which, at some points, makes use of the classification. 
In particular, the following, which generalizes results of [15, §5], is 
proved : 

PROPOSITION 1. Let QT be a maximal Q-trivial torus of G. Then the 
system QX of Q-roots (cf. [4]) is either of type Cs: ± (l/2)(y4-±yy) 
( 1 ^ * , i ^ 5 = dim QT) or of type BCS^ CS"U {(l/2)y{}^s. If we choose 
compatible orderings on #2 and Q S , then each simple Q-root is the re­
striction of exactly q simple R-roots, where q is the number of simple 
factors of GR. 

3. A topological compactification of X/T. Let 0 be a sufficiently 
large fundamental set for T in X, as in [4, p. 31 ]. Using Theorem 1, it 
may be shown, as in [4], that the closure Q, of fi is contained in the 
union of A and of finitely many rational components, and meets every 
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equivalence class under T of rational boundary components. In what 
follows, we let X* denote the union of X and of all rational boundary 
components. It is acted upon by GQ. Moreover, we may apply some 
results of [15] and obtain the 

THEOREM 2. There exists a topology on X*, which induces the natural 
topology on Ü, in which every element of GQ operates continuously, and 
such that V* = X*/T, endowed with the quotient topology, is a compact 
Hausdorff space. 

The construction shows that F* = FW FiVJ • • • KJ Vt, where 
V=X/T is open, everywhere dense, Vi=Fi/T(Fi), and the F / s are 
such that the groups 9l(/^)c form a system of representatives for the 
equivalence classes, modulo inner automorphisms by elements of I \ 
of proper maximal parabolic subgroups over 0 of G. Moreover, F» 
carries a natural structure of irreducible normal analytic space, and F» 
is the union of Vi and of some V/s of strictly smaller dimension 
(1 ^i^t). We may also prove the 

LEMMA. Each point v(E:V* has a fundamental system of neighbor­
hoods { C7t} such that U^CW is connected for each t. 

4. The ringed structure on V*. A complex-valued function ƒ de­
fined on an open subset U of F* will be called an 3C-function on U 
if it is continuous and if its restrictions to VC\ U and to ViC\ U are 
analytic in the given analytic structures (1 ^i^t). The sheaf of germs 
of 3C-functions, to be denoted by 3C, provides F* with a ringed struc­
ture. Our next goal is to prove that ( F*, 5C) is a normal analytic space, 
whose analytic structure is compatible with the given ones on F and 
the Vi's. I t is easily deduced from the above lemma (as in [16, 
Exposé 11]) that the stalk 3C„ of 3C at z>£ F* is integrally closed for 
every v. Using this fact, the properties of the F / s stated above, the 
Remmert-Stein theorem on removable singularities of analytic sets 
[12], and arguments similar to those of [3, pp. 870-872] (see also 
[16, Exposé 11]), one shows that it is enough to check the two follow­
ing properties of X: (a) For each i (l^i^t), the sheaf of germs of re­
strictions to Vi of 3C-functions is the structural sheaf of F»-; (b) each 
point fl£ F* has a neighborhood Uv such that the H-lunctions on Uv 

separate the points of Uv. In order to do this, we study certain auto-
morphic forms introduced below. 

5. Poincaré-Eisenstein series. To construct these, we need some 
results of Pyateckii-Shapiro [ l l ] and of Korânyi and Wolf [9] about 
unbounded realizations of X. Given a boundary component F of X, 
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there exists a "partial Cayley transform" VF of X onto a Siegel do­
main of the third kind (in the sense of [ l l ] ) , given by 

Im z - Re Lt(u, u) G V (t G F) 

(for notation and definitions, see [ l l , pp. 26-35]) in such a way that 
the elements of ïfl(F) become quasi-linear transformations in the sense 
of [ l l ] , and those of Z(F) take the form 

s—•> A-z + a(u, /), u—> B-u + b(t), t—>t. 

Assume now that F is a rational boundary component. Let JF(W, g) 
be the functional determinant of g a t w in the coordinates (z, u, t) 
of the unbounded realization associated to F. I t can be shown that 
JF{ew,g'g,)=JF{'W1 g)-x(g') if g /GZ(/ ?) , x being a rational character 
on Z(.F) which takes the values ± 1 on M'CW. Then, given a poly­
nomial P in the coordinates / on F, and a positive integer m, we 
may form the following series, to be called a Poincaré-Eisenstein series 

EP(w) = J2 P(t(wy))JF(w,yy™, 

where w= (2, u, t), tiw) =t, and M' is the subgroup of Z(F)C occurring 
in (ii) of Definition 1. I t can be shown that, for sufficiently large m, 
such a series converges uniformly on every compact set. By the use 
of some properties of JV, and of standard facts on Poincaré series, 
this convergence proof is reduced to that of ordinary Eisenstein series 
(associated to parabolic subgroups over Q of G), where we apply an 
unpublished criterion of Godement. We then study the behaviour of 
such series as we approach a boundary component (the effect of the 
operator <ï> of [16]). I t can be shown that the "limit" of EP on any 
rational boundary component F' may be viewed as an automorphic 
form for Y(F'), which is a Poincaré series if F' is equivalent to F, and 
is zero if dim i^ '^dim F, and F' is not equivalent under T to F. In 
particular, every Poincaré series with respect to the bounded realiza­
tion of X is a cusp form (i.e., has limit zero on all proper rational 
boundary components). 

6. The main results. These facts, and well-known properties of 
Poincaré series [ó], [ l6] , show that the sheaf 3C verifies the conditions 
(a), (b) of §4. In fact, we see that, in (b), the points of Uv may be 
separated by suitable ratios of Poincaré-Eisenstein series. From this 
follows, as in [2], [3], [16], 

THEOREM 3. The compactification V* of V=X/T carries a natural 
analytic structure, compatible with the analytic structure on any rational 
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boundary component {including X), with which it becomes a normal 
analytic space. The normal analytic space V* can be protectively em­
bedded as a protectively normal algebraic variety by means of a set of 
automorphic forms f or T, of some suitable high weight. 

I t is easily seen that if dim G > 3 , then F*— V has complex co-
dimension ^ 2 . Making use of Levi's and H. Kneser's theorems on 
removable singularities of holomorphic or meromorphic functions, we 
derive from Theorem 3 the following corollaries: 

COROLLARY 1. Let dim G>3. Then the field of meromorphic functions 
on V=X/T is an algebraic f unction field of transcendence degree equal 
to dim CX. Any such function is the quotient of automorphic forms of the 
same weight. 

We recall tha t we have assumed G to be simple over Q. However, 
Theorem 3 is valid without any such restriction, and Corollaries 1 
and 2 are valid if G has no invariant subgroup defined over Q of 
dimension three. 

COROLLARY 2. Let dim G>3. If f is an automorphic form of even 
weight, its limit {in the sense mentioned above for Poincaré-Eisenstein 
series) on any rational boundary component exists. The space of auto-
morphic forms of a given weight m>0 is finite-dimensional. 

Corollary 1 and the finite-dimensionality of the space of automor­
phic forms may also be proved by showing that V is pseudo-concave 
in the sense of Andreotti-Grauert [ l ] ; this approach will be discussed 
elsewhere by one of the authors of the present note. The first part of 
Corollary 2, which is an extension of Koecher's theorem, can also be 
proved, independently of Theorem 3, by the methods of [ l l , pp. 134-
143], together with some of the results of [5] giving conditions for 
the finiteness of the volume of HR/HZ for an algebraic group H over 
Q. Moreover, we note that Corollary 2 extends to vector-valued 
automorphic forms, with a suitable automorphy factor of the type 
considered in [ ló] . This follows from Theorem 3, and from an un­
published result of J.-P. Serre which, together with [ó], implies that 
if A is the sheaf of germs of such automorphic forms, then the direct 
image i*A of A, with respective to the inclusion i: V—*F*, is an 
algebraic coherent sheaf on V*. The finite-dimensionality is also of 
course a consequence of pseudo-concavity. 
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