
THE CLOSING LEMMA AND STRUCTURAL STABILITY 

BY CHARLES C. PUGH1 

Communicated by L. Markus, March 30, 1964 

Introduction. Consider a differentiable w-manifold M. Let X = 9C(M) 
be the space of all C1 tangent vector fields on M under a Cl topology 
[ l ] . Each XG9C induces a C^flow on M called the X-flow. Let d be 
a metric on M and let e be positive. Two flows are homeomorphic if 
there is a homeomorphism h of M onto itself taking the trajectories 
of one flow onto those of the other ; the two flows are e-homeomorphic 
if h can be chosen so that d(h(p), p) <e for all pÇzM. X is said to be 
structurally stable if, given e > 0 , there then exists a neighborhood 
'U of X in X such that for each F g U the F-flow is €-homeomorphic to 
the X-flow. Let us say that X is crudely structurally stable if we drop 
the € condition: X is crudely structurally stable if there exists a 
neighborhood U of X in X such that F G "It implies that the F-flow 
is homeomorphic to the X-flow. Let 2 denote those X in X which are 
structurally stable and let Sc denote those X in X which are crudely 
structurally stable, obviously 2 C^ c . The problem of structural sta
bility theory is to characterize S and Sc and to study the topological 
relation of 2 and Sc to X. 

The most comprehensive results in structural stability theory are 
due to M. Peixoto [2], [3], [4] who has shown, when M is a compact 
2-manifold, that S =SC , S = 9C, and that the fields in S are character
ized completely as the fields with "generic" induced flows. 

Related to the problem of structural stability is the following con
jecture: 

CLOSING LEMMA. If the X-flow has a nontrivial recurrent trajectory 
through some pE:M and if °U is any neighborhood of X in X then there 
exists F E ^ l such that the Y-flow has a closed orbit through p. 

(Recall that a trajectory is nontrivially recurrent if it is contained 
in its a- or in its co-limit set without being a closed orbit or a sta
tionary point.) 

Results concerning the Closing Lemma. M. Peixoto [4] has proved 
the Closing Lemma in the case that M is the 2-torus and X has no 
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singularities. We prove the following two forms of the Closing 
Lemrna. (Our proofs, however, are invalid for a Cr topology on 
9Cr, r > l . ) 

THEOREM 1. Let M be any differentiable 2-manifold and let X£9C 
have a nontrivial recurrent trajectory through p(EM. Let U be an arbi
trarily small coordinate neighborhood of p in M and let e > 0 be given. 
Then there exists A£9C such that 

(a) A vanishes on M—U. 
(b) The C1 size of A respecting the coordinates of U is less than e. 
(c) Y = X+A has a closed orbit through p. 

THEOREM 2. Let M be a compact n-manifold and let a Riemannian 
metric be put on M so that the norm of each linear transformation 
L: Tx(M)^Ty(M) is defined. Suppose that X£9C induces a flow <f> 
which has a nontrivial recurrent trajectory through pÇ^M. Define J(t, x) : 
Tx(M)—>T<j>(t,x)(M) to be the jacobian isomorphism of tangent spaces 
induced by x —><t>(t, x). Suppose that e > 0 is given and that 

Urn - \\j~Kt, P)\\ = 0. 
t->oo t 

Then there exists A£9C such that the C1 size of A is less than e and 
Y = X+A has a closed orbit through p. 

Where M is compact, all Riemannian metrics are equivalent and 
so Theorem 2 does not depend on the choice of Riemannian metric. 

DEFINITION. Let X be in 9C(ikf) for a differentiable ^-manifold M. 
A flow-box for X a t pE:M is a coordinate neighborhood U of p in M 
such that in terms of the coordinates {ux, • • • , un) of £7, u\p) = 0 for 
i = l , 2, • • • , n and 

/ d \ 
X = ( J for all u in U. 

If Xp5^0, then it is well known that a flow-box for X at p exists. 
The following lemma is the principal tool used to prove Theorems 1 

and 2. 

LEMMA. Let e > 0 and 0 < S < 1 be given. Let M be a differentiable n-
manifold and let X £ 9C induce the flow <j>. Suppose that X does not van
ish at p* G M and let U be a flow-box f or X at p*. Let 

n = {(0, u\ u\ • - - ,un) G 17}. 

Suppose that P is a subset of VL such that arbitrarily near p* there are 
distinct points of P lying on a common ^-trajectory {e.g., let P = jLtP\II 
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and let />*£/zf\n where p is a nontrivial recurrent <j>-trajectory). Then 
there exist points p and q of P such that 

\p~P*\ <*> 

(a) \q-p*\ < « , 

$(̂ *> p) = q f°r some t* > o, 
and 

If r ^ </>(/', p) E Pfor some t', 0 < t' < /*, 
( b ) , , , i i i i i 

then \p — r\ > ô\ p — q\ and \ q — r\ > 8\ p — q\ , 

where \x — y\ denotes the distance between x and y respecting the co
ordinates of U. 

The proof of this lemma is easy. Just take a po and go in P obeying 
(a) where € has been replaced by the smaller constant | ( 1 — è) 
-e and where t* is called to. If (b) fails to be true for some r = <j>(t', po), 
then suppose that \qo — r\ S^\po — <Zo|. Replace #0 by r and regard 
the pair (p0, r) instead of the pair (p0, q0). Call (p0, r) = (pu qi). Pro
ceed similarly if | qQ — r\ >ô\ po — q0\ but | p0 — r\ ^ ô | p0 — q0\ to get 
(Pu <Li) = (ƒ> <Zo). Proceed with (pu qx) as was done with (p0, go), getting, 
thereby, a sequence (£*, g*) k=l, 2, • • • . The process ends at a 
finite step (pmi qm) because $(/, £) crosses II at most a finite number of 
times for 0 g / ^ / 0 . The pair (pmf qm) satisfies (b) by construction, It 
also satisfies (a) because 

m 

\P* — Pm\ ^ E m a x (\pi — pi-1 I , I Qi — Qi-i | ) + | pO — p* | 

< JC 8 * | * o - ?o| + | * o - ^ * | 
; = i 

i i ! i i 
< I Po ~ qo I • - — - + \po-p*\ 

1 — o 
6 - ( l - 5 ) 6(1 - « ) 

< < € 
2.(1 — 0) 2 

Similarly \p* — qm\ <e. 
As a consequence of Theorem 1, M. Peixoto's paper [4] can be 

shortened considerably. The methods used to prove Theorem 1 can 
also be used to solve the following problem. 

Suppose that M=S2, X£9C(52), and that the X-flow has a closed 
orbit 7 which is isolated but unstable. Suppose there are n generic 
saddle points pu p2, • • • , pn outside 7 and n more generic saddle 
points q%, qi, • • • , qn inside 7 such that one separatrix from each pi 
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has y as an co-limit and one separatrix from each qi has y as an ce-
limit point. The problem is to find an arbitrarily C1 small A£9C such 
that for Y = X+A, the F-flow "joins the pïs to the g/s." That is, 
each pi should have a F-separatrix o\- which is also a F-separatrix of 
some qj. When A is sufficiently C1 small, it is easily seen that the same 
qj cannot be joined to two different pi's. M. Peixoto [4] has solved 
this problem for n = 1. The problem for n ^ 2 is related to an investiga
tion of "higher order structural stability" at present being completed 
by G. Sottomayor. Sottomayor wishes A to be C5 small, but—as in 
the Closing Lemma itself—our methods only produce perturbations 
which are Cl small. 

I hope that Theorem 2 will yield as a corollary that distal minimal 
nontrivial recurrent flows on compact differentiable manifolds may be 
closed by arbitrarily Cl small perturbations A. It would suffice to 
prove that for some pÇ^M, \j~x(t, p)\ is bounded as t—><*> where J 
is the jacobian isomorphism induced as in Theorem 2. Roughly, the 
reason this should be true is that | | /_ 1 | | is a measure of how fast the 
flow contracts and distal flows don't contract too much. 

Finally, we inspect two examples related to the theory of structural 
stability for noncompact 2-manifolds. First we show that for M = R2, 
Xc^lf. Second, following M. L. Peixoto, we see that there exists a 
nonvanishing X£9C(i£2) which is not in Sc. This shows that it will 
probably be quite difficult to characterize the elements of 2) and Sc 

for noncompact 2-manifolds. 
In a sense, this is unfortunate because Theorem 1 holds for non-

compact differentiable 2-manifolds and one might hope to use it to 
t ry to generalize M. Peixoto's characterization theorem [4] to the 
noncompact case. In particular one would hope to show that Xë£2 c 

if the X-flow has a nontrivial recurrent trajectory. I can prove this if 
M has finite genus but if M has infinite genus, I can prove it only by 
using the following 

CONJECTURE. Suppose that M is a differentiable 2-manifold and that 
X£2Jc(ikf). Let T be the union of all the closed orbits of the X-flow. Then 
r is closed in M. 
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