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1. Introduction. This note presents a few of the results which we 
have obtained by applying a classical and fundamental idea to the 
analysis of certain partial difference equations. The idea is that cer­
tain multidimensional problems can be solved by solving a few one-
dimensional problems—it is the basis of the classical method of sepa­
ration of variables of mathematical physics. In the case of partial 
difference equations, this idea leads to tensor product analysis of the 
matrices involved. 

With this approach we accomplish the following: (i) Explicit exact 
solutions of problems consisting of separable partial difference equa­
tions and boundary conditions are obtained, (ii) A stable algorithm 
is devised with which these exact solutions can be evaluated with less 
work than approximate solutions can be computed by overrelaxation 
techniques, (iii) A simple, direct analysis of certain alternating direc­
tion implicit (ADI) methods is carried out and, as a result, a simple 
explanation of the power of this method is given, (iv) A necessary 
and sufficient condition is found for commutativity of certain matrices 
which occur in ADI schemes. 

2. Tensor products applied to elliptic and parabolic boundary 
value problems. The tensor product (Kronecker product, direct pro­
duct) of two matrices A = {a^} and B = {bki}, denoted by A ®B, can 
be written as a matrix in block partition form : 

A ® B 

[anB • • • dinB) 

iB • • • amnB 

A detailed account of properties of tensor products is given in [8]. 
Some of the elementary properties are: 

(A+B)®C=A®C+B®C, A®(B+C) = A®B+A®C, 

(A®B)(C®D) = AC®BD, (A®B)~1= A-l®B~x. 

For brevity, we do not indicate explicitly the sizes of the matrices 
involved; we assume throughout that the sizes of matrices and vec­
tors are compatible with the indicated operations. 
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Consider a second order linear elliptic partial differential equation 
in two independent variables x and y 

(2.1) £[v]=f, 

in which the differential operator <£ has the special form 

(2.2) £ = £ * + £ „ , 

where £x(£u) is an operator with derivatives only with respect to 
x(y) and coefficients which depend only on x(y). For example, <£* 
might be 

a2 d 
£x = — a2(x) h ai(x) h ao(x), a2 > 0, 

dx2 dx 
or it might be in self-ad joint form 

d / d\ 
£* = — a2(x) —( ax(x) — ) + a0(x), a2a\ > 0. 

dx \ dx/ 

We treat problems consisting of (2.1) in the unit square 

R = {(s, y) J 0 < x < 1, 0 < y < l} 

and any of a number of conditions specified on the boundary of R 
such as Dirichlet, mixed, or periodic boundary conditions. 

A partial difference equation is derived from (2.1) by the usual 
procedure of placing mesh points in R and replacing derivatives in £ 
with divided differences. The set of mesh points are the intersections 
of a set of lines parallel to the x-axis with lines parallel to the y-axis ; 
the spacing between lines need not be uniform. The result is a system 
of linear equations which can be written as 

(2.3) Lu = g 

where L is a matrix and u is the approximation to the solution v of 
(2.1) at mesh points. The vector g involves values of both the right 
side of (2.1) and boundary values. The exact form of L depends 
on the operator JB, the difference approximation, and the boundary 
conditions; but, for five point approximations and £ of the form 
(2.2), it is readily verified that (2.3) is of the form 

(2.4) ( 7 ® A + B ® T)u = g 

where I denotes identity matrices of appropriate sizes. 
If A and B are nondefective, then there are nonsingular matrices P 

and Q whose columns are eigenvectors of A and B, respectively, such 
that 
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P-1AP = A(4), QrlBQ « A(£), 

where A(-4) denotes a diagonal matrix of eigenvalues of A. For the 
difference approximations and the boundary conditions commonly 
used, A and B are nondefective. I t can easily be checked, by direct 
substitution and simplification, that the exact solution of (2.4) is 

(2.5) u = {Q <g> P[l ® A(4) + A(B) ® l]~lQ-1 ® P~l}g. 

This is, of course, the analog of the familiar solution of partial differ­
ential equations in terms of a Green's function. 

For some classical equations, such as the Laplace, Poisson, Helm-
holtz, biharmonic, etc., in rectangular Cartesian coordinates, the 
matrices P and Q are known explicitly for mesh points equally spaced 
in the coordinate directions. In other cases, when P and Q must be 
computed, the amount of computation is small compared with the 
total amount necessary for evaluating the solution. This is due to 
the fact that A and B are band matrices. For self-adjoint problems, 
P and Q are real orthogonal matrices so that P~l~PT

f Qrl — QT. In 
nonsymmetric problems, one does not invert P and Ç, rather one 
determines the eigenvectors of the matrices AT and BT, a simpler 
problem than the inversion. 

Although the matrix on the right side of (2.5) is the inverse of L, 
it is not efficient to compute I/ - 1 . However, the solution of the bound­
ary value problem can be computed efficiently by evaluating 

(2.6) ua = X) ?<« 12 pAh(A) + ^«(B)]-1 £) qak ]£ ffiifyi 
a 0 k I 

in which {ƒ>#} = P , {£;<*}=(?, {ppi}=P~\ {â«k} =Q~~\ and \p(A), 
\a(B) are eigenvalues of Ay By respectively. The values of u can be 
found from (2.6) by computing, successively, three intermediate ma­
trices, each of the same size as u. The evaluation of (2.6) is computa­
tionally stable. 

We now compare the work required to solve the Laplace equation 
with a grid of n points in each direction by (i) optimum successive 
overrelaxation (SOR), (ii) direct solution by tensor products (TP), 
(iii) the Peaceman-Rachford alternating direction implicit method 
(ADI). The SOR and ADI methods are iterative and we assume that 
the iteration is terminated when the reduction in error is consistent 
with the discretization error of the difference approximation. More­
over, we consider the standard five point approximation to the La-
placian so that the iteration is terminated when the initial error is 
reduced by a factor of n~2. The asymptotic order (as n tends to 
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infinity) of the total number of arithmetic operations (additions, 
multiplications, divisions) for each method is1 

Method: 

Operations: 

SOR 

14 nz log n 

T P 

4w3 

ADI 

40 n2 log2 n 

The ratio of additions to multiplications is approximately the same 
for each method. The superiority of the ADI method over the T P 
method is to be expected because it is an efficient approximation 
method which is based on the tensor product nature of the problem 
(see §3). 

Thus, it is clear that problems of the form (2.1)-(2.2) can be solved 
by first solving two one-dimensional problems. The method is easily 
extended to higher dimensions. The following are examples of the 
tensor product formulation of common partial difference equations. 
As above, the region is a rectangle. 

Nine point approximation to the Laplace {Poisson) equation-. 

[67 ® A + 6B ® I + B ® A]u = g. 

Five point approximation to the Helmholtz equation : 

[l®A + B®I + crI® l]u = g, cr = constant. 

Thirteen point approximation to the biharmonic equation: 

[I ® A + B ® l]2u = [7 ® A2 + IB ® A + B2 ® I]u = g. 

The Laplace equation in spherical coordinates (3 dimensions) : 

{[C ® Bi + I ® B2] ® I + I ® I ® A}u = g. 

This tensor product method can also be used to solve parabolic 
finite difference equations. A typical scheme is the (implicit) Crank-
Nicholson method for the heat equation which results in a partial 
difference equation of the form 

[I ® A + B ® I][u(t + At) + u(t)] = 2<r[u(t + At) - u(t)] 

where a depends on the grid spacing. 

1 For computing machines with 32K core storage, n can be as large as (about) 150. 
For n > 150, tapes must be used. For such problems, the T P method has the additional 
advantage that fewer tape operations are required for it than for ADI. Currently, 
10,000 words can be transferred to or from tapes in a time interval equivalent to 
about 106 arithmetic operations. Consequently, for 1 5 0 ^ « ^ 1 0 0 0 , the T P method is 
more economical than ADI for solving the Laplace equation. 
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In addition to elliptic and parabolic partial difference equations, 
tensor product analysis can be applied to other problems such as 
difference-differential equations, integral equations in more than one 
variable, integro-differential equations, etc. 

3. Tensor product analysis of alternating direction implicit meth­
ods. Consider the differential equation (2.1) and partial difference 
equation (2.3) derived from it. Even if the operator <£ is not of the 
form (2.2), one can write (2.3) in the form 

(3.1) (H+V)u = g 

where H and V are the matrices derived from differentiation with 
respect to x and y, respectively. We assume that any cross derivative 
term has been eliminated. If £ is of the form (2.2) then H=I®At 

V = 5 0 7 a s i n (2.4). 
I t is well known [2] that commutativity of H and V plays an im­

portant role in the analysis of ADI methods. I t is clear that H and V 
commute if L is of the form (2.4). I t is also known [3] that (2.4) is 
not necessary for commutativity. We now give a necessary and suffi­
cient condition for commutativity for the special case of five point ap­
proximations. We say that H and V are of standard block tridiagonal 
form if H is block diagonal where each diagonal block has all nonzero 
entries on the tridiagonal and if V is block tridiagonal where each of 
the tridiagonal blocks is a nonsingular diagonal matrix. 

THEOREM. If H and V are of standard block tridiagonal form, then a 
necessary and sufficient condition for HV= VH is that there exist a 
nonsingular diagonal matrix D and tridiagonal matrices A and B such 
that 

(3.2) H = D~l[l ® A]D, V = D~l[B ® l]D. 

This theorem states, in essence, that the most general differential 
equation which yields the equation (3.1) by means of a five point 
approximation and with HV— VH is 

(3.3) -£[d(x,y)v] = ƒ 
d(x, y) 

where <£ is of the form (2.2). 
Note that for any matrices A and B which have complete sets of 

orthonormal eignvectors d and/y, corresponding to eigenvalues X; and 
(ry, respectively, the vectors fj®ei form a complete set of orthonormal 
eigenvectors for both I® A and B ®I. Moreover, the vectors D~lfj®ei 
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form a complete set of eigenvectors of D~l [I® A +B ®I]D orthogonal 
with respect to D2. 

The following ADI scheme is given in [lO] 

(H + P J V m + 1 / 2 ) - g - (V - pnJ)u™ 

(V + p w i> ( w + 1 ) - (V - c o P m i > « + (1 + ü>)pmu(m+l<» 

with fixed « and iteration parameters pm. The values « = 1 , 0 corre­
spond to the Peaceman-Rachford scheme [9] and the Douglas-
Rachford scheme [6], respectively. If H and V commute, then by 
the theorem, they are of the form (3.2). Hence the error €(m) = uim) —u 
at the mth iterate satisfies 

D~l[l ®(A + PJ r ) ]£« ( w + 1 / 2 ) = - D~l[{B - pmI) ® ï\DJm\ 

D~l[{B + pj) ® l]De^+v = D~l[(B - coPm7) ® l]De™ 

+ (1+C0)PW€^+1/2). 

The error can be expanded in terms of the eigenvectors as 

A simple computation shows (m) f(Xt (m+l) (m) |"(^** ~~ Pm){<Tj — pm) pmQ^i + <Tj) 
h (1 — o)) 

- (Xi + Pm)((Tj + pm) (A* + Pm)(cTj + pm) -

Note that for the special choice « = 1 (the Peaceman-Rachford 
scheme), c4f+1) c&n be made zero for all i by the choice pm — <rj for 
some j . This explains the power of the Peaceman-Rachford scheme— 
a large number of the components of the error vector can be anni­
hilated simultaneously. Furthermore, this is done without increasing 
any other components of the error vector if the A*, <ry and pm are 
positive, as is usually the case. In contrast, the SOR method can 
annihilate at most one component of the error; the Douglas-Rachford 
scheme cannot annihilate any error component. Therefore, the Peace­
man-Rachford scheme can be exact (except for roundoff) in a number 
of iterates equal to the number of grid points taken in either the x 
or y direction. Nevertheless, it is normally more efficient to use a set 
of "optimum parameters" [7]. This is due to the fact that satisfactory 
(but inexact) results can normally be obtained with a smaller total 
number of iterations [3]. 

Tensor product analysis has been applied to schemes proposed by 
Douglas [5] for parabolic equations, Baker and Oliphant [ l ] , Conte 
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and Dames [4] and others. The results will be reported in the paper 
which describes the foregoing results in detail. 

This analysis has also been applied to problems in higher dimen­
sions and allows one to easily generate several ADI schemes in higher 
dimensions. 

Added in proof. Formula (2.5) is implicitly given by studies of the 
separation of variables in an abstract setting, e.g. [ l l ; 12]. Let Ao 
= { — ôiti-i + 2ôu — 5;,;+i}. Egervâry [13] gives (2.5) for 
L = (Ao®I-{-I®Ao), but does not give the efficient computational 
method (2.6). Heller [14] has treated ADI methods for 
L=(Ao®I+I®Ao)p. 
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