WEIGHTED TRIGONOMETRICAL APPROXIMATION ON R¹ WITH APPLICATION TO THE GERM FIELD OF A STATIONARY GAUSSIAN PROCESS

BY N. LEVINSON AND H. P. MC KEAN, JR. Communicated by J. L. Doob, September 13, 1963

Given an even, nonnegative, Lebesgue measurable weight $\Delta = \Delta(a)$ ($a \in \mathbb{R}^1$) with $\int \Delta < \infty$, let Z be the (real) Hilbert space of Lebesgue measurable functions f with $f^*(-a) = f(a)$ and $||f|| = \sqrt{\int |f|^2} \Delta < \infty$, subject to the usual identifications, let Z^{cd} be the span (in Z) of e^{iat} ($c \le t \le d$), and introduce the following subspaces of Z:

- (a) $Z^{-} = Z^{-\infty 0}$,
- (b) $Z^{+} = Z^{0\infty}$,
- (c) $Z^{+/-}$ = the projection of Z^+ upon Z^- ,
- (d) Z^{\bullet} = the class of entire functions $f = f(\gamma)$ ($\gamma = a + ib$) of minimal exponential type which, restricted to the line b = 0, belong to Z,
 - (e) $Z^{0+} = \bigcap_{\delta>0} Z^{0\delta}$,
 - (f) Z_{\bullet} = the span of (real) polynomials of ia belonging to Z_{\bullet}
 - (g) $Z^{-\infty} = \bigcap_{t < 0} Z^{-\infty t}$.

Δ is a Hardy weight if

$$\int \frac{lg^-\Delta}{1+a^2} > -\infty;$$

such a Hardy weight is expressible as $|h|^2$, h being an (outer) function belonging to the Hardy class of functions $f(\gamma)$ ($\gamma = a + ib$) ($\gamma^* = a - ib$) regular in the half plane (b>0) with $f^*(-a) = f(a)$ and $\int |f(a+ib)|^2 da$ bounded (b>0). $Z \neq Z^-$ or $Z = Z^- = Z^{-\infty}$ according as Δ is Hardy or not, a fact that goes back to Szegö.

Given a Hardy weight, it can be proved that

$$Z^- \supset Z^{+/-} \supset Z^- \cap Z^+ \supset Z^{\bullet} \supset Z^{0+} \supset Z_{\bullet}$$

and the problem is to decide if some or all of the above subspaces coincide, special attention being paid to $Z^{+/-}$ and Z^{0+} for probabilistic reasons explained below. $Z^{0+} = Z^{\bullet}$ for the general Hardy weight, but the other inclusions can be strict; for instance, $Z^{-} \neq Z^{+/-}$ if and only if $\mathbf{j} = h/h^{\bullet}$, restricted to the line b = 0, agrees with the ratio of two inner functions, while $Z^{+/-} = Z^{\bullet}$ ($= Z^{0+}$) if and only if the reciprocal h^{-1} of the outer Hardy function h figuring in $\Delta = |h|^2$ is an entire function of minimal exponential type. $Z^{\bullet} \neq Z_{\bullet}$ is possible even for such

¹ The preparation of this paper was supported in part by the Office of Naval Research and in part by the National Science Foundation GP-149.

nice weights. Z^* need not be a closed subspace of Z if Δ is non-Hardy, but $Z^* \subset Z^{0+}$ for a general weight.

 Δ can be viewed as the spectral weight of a (real) centered stationary Gaussian process with sample paths $t \rightarrow x(t)$, probabilities P(B), and expectations E(f):

$$E[x(s)x(t)] = \int e^{ia(t-s)}\Delta.$$

Now the map $x(t) \rightarrow e^{iat}$ effects an isomorphism between the (real) Hilbert space Q, obtained by closing up (real) combinations of x(t) ($t \in R^1$) under the norm $||f|| = \sqrt{E(f^2)}$, and Z, and introducing the span Q^{cd} of x(t) ($c \le t \le d$) in Q and the corresponding field \mathbf{B}^{cd} , a perfect correspondence is obtained between

- (a) Z^{-} , $Q^{-} = Q^{-\infty 0}$, and $B^{-} = B^{-\infty 0} = \text{the past}$,
- (b) Z^+ , $Q^+ = Q^{0\infty}$, and $B^+ = B^{0\infty}$ = the future,
- (c) $Z^{+/-}$, $Q^{+/-}$ = the projection of Q^+ upon Q^- , and $B^{+/-}$ = the minimal splitting field,
 - (d) Z^{0+} , $Q^{0+} = \bigcap_{\delta>0} Q^{0\delta}$, and $B^{0+} = \bigcap_{\delta>0} B^{0\delta} = \text{the germ}$,
- (e) Z_{\bullet} , Q_{\bullet} = the span of such derivatives (in Q) as the sample path admits at t=0, and B_{\bullet} = the corresponding field,
- (f) $Z^{-\infty}$, $Q^{-\infty} = \bigcap_{t < 0} Q^{-\infty t}$, and $B^{-\infty} = \bigcap_{t < 0} B^{-\infty t}$ = the distant past or tail field.

 B^- , B^+ , $B^{+/-}$, etc. are not just the smallest fields over which Q^- , Q^+ , $Q^{+/-}$, etc. are measurable, but if, for instance, $f \in Q$ is measurable over $B^{+/-}$, then it belongs to $Q^{+/-}$.

 $\mathbf{B}^{+/-}$, the minimal splitting field, needs some explanation.

Given a pair of fields B^- and B^+ (such as the past and future described above), a field $B \subset B^-$ is a splitting field of B^- and B^+ if, conditional on B, B^+ is independent of B^- , B^- is itself a splitting field, the intersection of two splitting fields is again a splitting field, and a minimal splitting field exists, coinciding in the present (Gaussian) case with the field $B^{+/-}$ of the projection of the future upon the past.

Given a Hardy weight $\Delta = |h|^2$, or what is the same, if the tail field $\mathbf{B}^{-\infty}$ is trivial, the motion splits over its germ $(\mathbf{B}^{+/-} = \mathbf{B}^{0+})$ if and only if $Z^{+/-} = Z^{0+}$, and according to the result announced above, that happens if and only if h^{-1} is an entire function of minimal exponential type; this is the principal probabilistic result of the investigation. To the best of our knowledge, the only published fact about \mathbf{B}^{0+} is the lemma of Tutubalin-Freidlin [Teor. Veroyatnost. i Primenen. 1 (1961), 196–199] that if Δ is larger than the reciprocal of a polynomial near $\pm \infty$, then $\mathbf{B}^{0+} = \mathbf{B}_{\bullet}$.

Massachusetts Institute of Technology