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It is the object of the present note to present a new nonlinear 
version of the orthogonal projection method for proving the existence 
of solutions of nonlinear elliptic boundary value problems. The key 
point in this method is the application of a new general theorem con­
cerning the solvability of nonlinear functional equations in a reflex­
ive Banach space involving operators which may not be continuous. 
In several recent papers ([2], [3], [4], [5]) the writer obtained pre­
liminary results in this direction involving operator equations in 
Hilbert space. The passage from Hilbert spaces to reflexive Banach 
spaces marks a tremendous increase in the power and applicability 
of this approach to nonlinear boundary value problems and involves 
a sharp development of its basic ideas. 

We show the existence of variational solutions of elliptic boundary 
value problems for strongly elliptic systems of order 2m on a domain 
in Rn in generalized divergence form 

(1) Au = 2 D°Aa(%, u, • • • , Dmu), 
\a\£m 

where the Aa are of polynomial growth in (u, Du, • • • , Dmu), Earlier 
results for equations of the form (1) were obtained in 1961-1962 by 
M. I. Visik ([9], [lO], [ l l ] ) by a more concrete analytic approach 
under much stronger hypotheses than those applied in our basic 
existence theorem, Theorem 1 below. The result of Theorem 1 is 
both simpler and considerably more general than the results of Visik 
in the papers cited above. 

Because of the potential wide applicability of our method for 
other nonlinear problems as well as its simplicity, we give the com­
plete proof below. 

1. Let ft be an open subset of the Euclidean space i?w, where for 
convenience we assume 0 to be bounded and smoothly bounded. We 
denote the points of Q by x = (xi, • • • , xn) and ff(x)dx denotes 
integration with respect to Lebesgue w-measure. We set 

1 d 
j). = for 1 g j <; Uj 

i dxj 

1 The preparation of this paper was partially supported by NSF Grant 19751* 
The author is a Sloan Fellow. 
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and for each n-tuple a=(cei, • • • , a n ) , we set Da = Di1 • • • Z)£n, 
\a\ == ]C/ a i« By functions w on Û we shall mean r-vector functions 
w = («i, • • • , ur) for a fixed positive integer r where each Uk is a com­
plex-valued function in 0 while Dau—(I)au\, • • • , Daur). 

Let m be a. positive integer, £ a real number with 1 < £ < + <*>. 
Then: 

Wm"(Q) = {M| M G J>(0), Dau G £*(Û) for \ a\ ^ w}. 

(The derivatives JDa# in this definition are taken in the sense of the 
theory of distributions, as they shall be below.) 

Wm>p(Q) is a reflexive, separable Banach space with respect to the 
norm 

114».*= { £ f0 \D^\'dÀ1,P. 

We shall denote by C" (Q) the family of infinitely differentiate func­
tions with compact support in Î2, considered as a subset of WmtP(Q,). 
Let (u, v)= ^2kfuk(x)vk(x)dx be the natural pairing between u in 
L*(Q) and i; in L9(0) with q^pip-1)'1. 

We consider the system of differential operators 

(1) Au = X £*-4a(ff, « , - • - , Z>m )̂ 
|a|_m 

where for each ce, 4̂ « is an r-vector function of # in Œ, the function 
w on 0, and all the derivatives of u through order m. 

We shall assume the following concerning A : 
ASSUMPTION I. The f unctions Aaare continuous f unctions of all their 

numerical arguments. There exists a real number p>\ and a continuous 
function g(r) of the real variable r such that f or all u in Wm*p(Q), all a 
with \a\ Sm, and almost all x in S 

(2) | Aa(x, u(x), • • • , D»u(x)) | 

V \fi\*M ) 

We may weaken (2) to the following: 

(2) | Aa(x, u(x)9 • • • , Dmu(x)) | 

S g(\\u\\m,p) j S | &<*) \<*-»+1* + l\ 

where 
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/ l m- £ \\-l(, m~ \?\\~ll,. 1)
(-m~ I*8!) 

+ ( !— )[*ƒ- ^ - è O 
\ n /) p n 

To define a variational boundary value problem for the system A, 
we assume that we are given a closed subspace V of Wm>p(ÇÏ) with 
Cc°° (0) C V, (where p is the real number of Assumption I). Correspond­
ing to the representation (1) for A, we have the nonlinear Dirichlet 
form a(u, v) defined for all u and v in Wm>v(Sl) by 

(3) a(u, v) = ]T) <4a(*, « , • • • , £>m^), £>az>). 
lalsm 

Assumption I implies that a(u, v) is well defined by formula (3) for 
all u and v in W1W»P(Ö) and that by Holder's inequality we have 

| a(u,v)\ Û gi(|MU.p)|MU.p 

where g±(r) is a function of the real variable r depending on the func­
tion g of Assumption I. 

Let V* be the conjugate space of F, i.e. the space of bounded con­
jugate-linear functionals on V. For w G F * , ^ ^ the value of w at v 
is denoted by (w, v). In particular if /£LÖ(Q), the bounded conjugate-
linear functional (ƒ, v) on V yields an element of V* which we may 
again denote by ƒ. 

We now define the variational boundary value problem correspond­
ing to (A} V) by: 

DEFINITION. LetfÇi F*. Then u is said to be a solution of the varia­
tional boundary value problem for Au =ƒ corresponding to the space V if 
Mçzy while for all v in V, 

(4) a(u,v) = (jT,»). 

If we consider the extremum problem for the integral 

u) = I F(x, u, (5) J(u) = I F(x, u, - • - , Dmu)dx 
J a 

with u ranging over V, then u is a critical point of the functional J 
if and only if u is a solution of the variational boundary value prob­
lem in the sense of the above definition for the given space V and the 
system A given by -4«= ( — l) ,ot ,i7pa. Such critical points have been 
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studied recently for p = 2 by S. Smale in the context of a generaliza­
tion of the Morse theory. 

To formulate the hypothesis of our existence theorem, we need the 
following additional definition : 

DEFINITION. B is said to be an admissible lower order operator if 

(6) Bu = Z) D^Bpix, u,->-, D^u) 
I/3|<:m-l 

where each Bp is a continuous function of its numerical arguments and 
satisfies an inequality of the form 

(7) I B0(x, « , - • - , D»u) I 

^ ft(IMU.p) { 23 I &u(x) |(*-I>+4T + l l 
V|7l*»-1 / 

where 

(8) 

n ^ , / 1 m - I 71 V 1 (, 
« 

(m — I 71) 

+ (=^)} 
THEOREM 1. Le/ -4 be a system of differential operators of the form 

(1) satisfying Assumption I for a given value of p, Kp< + °o. Let V 
be a closed subspace of Wm,p(Q) such that Cc°°(12) C V. Suppose that there 
exists an admissible lower order operator B and a real-valued function 
c(r) of the real variable r with lim,.-**, c(r) — + oo such that the following 
two conditions hold : 

(1) If b(u, v) is the nonlinear Dirichlet form corresponding to the 
form (6) of B, then f or all u and v of V, 

(9) Re {a(u, u — v) — a(v, u — v) + b(u} u — v) — b(v, u — v)) è 0. 

(2) For all u in V, 

(10) Re {a(u, u)) è c(||«||Wip)||«||WfP. 

Then for every f in V*> the variational boundary problem for Au=f 
with null V-boundary conditions has at least one solution u, i.e. there 
exists u in V such that a(uyv) = (ƒ, v) for all v in V. 

We deduce Theorem 1 from the following abstract theorem con­
cerning nonlinear operators in Banach spaces. 

THEOREM 2. Let X be a reflexive separable Banach space, X* its 
conjugate space considered as the space of bounded conjugate linear f une-
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tionals on X. For w/GI*, w £ I , denote the value of w at u by (w, u). 
Let G be a (not necessarily linear) operator from X to X* satisfying the 
following conditions: 

(1) There exists a completely continuous operator C from X to X* 
such that for all u and v in X, 

(11) Re {(G(u) - G(f>), u-v) + (C(«) - C(v), u - v)} à 0. 

(2) There exists a function c(r) of the real variable r with c(r)—>+ oo 
as r—> oo such that for all u in X, 

(12) Re(G(fO,«) MHIHHI-

(3) G is demi-continuous, i.e. it is continuous from the strong topology 
of X to the weak topology on X*. 

Then G is onto X*, i.e. the equation Gu = w has a solution u in Xfor 
every w in X*. 

(For a special class of continuous operators, the so-called potential 
operators, Theorem 2 is stated by Vainberg and Kachurovski as 
Theorem 7 of [8]. This was pointed out to the writer by George 
Minty.) 

Before proceeding to the proof of Theorem 1 using Theorem 2, it is 
interesting to give a simplified form of Theorem 2 along the lines of 
the Lemma of Lax-Milgram [ö] for linear operators. 

THEOREM 3. Let X be a reflexive Banach space, a(u, v) a function on 
XXX which is conjugate linear in v but not necessarily linear in u. 
Suppose that a(u, v) is separately continuous in each variable with the 
other held fixed. Suppose further that 

(1) For u and v in X, 

Re {a(u, u — v) — a(v, u — v)} à 0. 

(2) There exists a function c(r) with lim,»*» c(r) = + oo such that 

Re {a(u, u)} ^ $(|M|)-||*||. 

Then for every continuous conjugate linear functional wonX} there exists 
u in X such that 

a(uy v) = (w, v) 

for all v in X. 

PROOF OF THEOREM 1 FROM THEOREM 2. We let X be the space V 
considered with the Banach space structure induced by Wm*p(Q). 
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Since Wm>p(ti) is reflexive and separable, F is also. For u and v in F, 
we have already remarked that 

I <»(«,*) 1 É * I ( M I ) I M | . 

Hence a(u, v), for fixed u in F, is a bounded conjugate linear function 
of v in F and hence representable in the form 

a{u, v) = (G(u), v) 

where G ( # ) £ F* is uniquely determined. Furthermore, a(u, v) = (ƒ, v) 
for all v in F if and only if G(u) =ƒ. Hence to prove Theorem 1, it 
suffices to prove that G maps F onto F*. 

By a similar argument, there exists an uniquely defined operator 
C from X to X* such tha t for all u and v in F, 

6(«, v) = (C(u), v). 

From the fact that B is an admissible lower-order operator, the So-
bolev imbedding theorem and Holder's inequality, it follows that 

(13) I (Cu, v) I ^ g2(IM|m,p)||î>||w_i,r 

where l/r>l/p — l/n. In addition, the imbedding map J of Wm>p(Q) 
into TFm~1,r(0) is a compact linear map. 

Let Vi be the space F with the topology induced by TFm~1»r(ö). 
Then for u\ in Fi, there exists an unique element C\U\ of Vf such that 
for every v\ in Fi, 6(^1, i>i) = {C\Ui, V\). Setting Ui~Ju, V\ — Jv, we see 
that C=J*CiJ. 

To apply Theorem 2 to complete the proof of Theorem 1, it is 
only necessary to prove that C is completely continuous and that G 
is demi-continuous. Indeed the assumptions (1) and (2) of Theorem 2 
for the particular operators G and C just defined are merely formal 
translations of conditions (1) and (2) of the hypothesis of Theorem 1. 
To prove that C is completely continuous, it suffices to prove that 
Ci is demi-continuous. For then, if {uk\ is a sequence from F such 
that Uk—^uo weakly in F, Juk converges to JUQ strongly in V\ since 
J is compact linear and it would follow that CiJuk~->CiJuo weakly in 
Vf. Since J* is compact linear (and hence completely continuous) 
from Vf to F*, Cuk = J*C1Juk-^J*CiJuo= Cu0 strongly in F*. 

To complete derivation of Theorem 1, it suffices to show that both 
G and C\ are demi-continuous. Since both operators are defined in the 
same way, it suffices to carry through the proof for G. 

LEMMA. G is demi-continuous. 
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PROOF. Let Uk-w strongly in V as k—» oo. Since G maps bounded 
sets in V into bounded sets in V* and the latter are precompact in 
the weak topology, it suffices to show that there is a subsequence of 
G(ujc) converging weakly to G(u) in V*. Let v be a fixed element of V. 
We may choose a subsequence of {m} such that Uk(x) and DaUk(x) 
converge almost everywhere on 0 to u(x) and Dau(x) for all a with 
| a | ^ w . Since Aa is continuous in all its arguments, it follows that 
Aa{x, Uk(x)y • • • , DmUk(x)) will converge almost everywhere on 0 to 
i4a(ac, u(x), - • • , Dmu(x)). 

Let 

«*.«(*) = f 1 + E I #%*(*) I^D+0*») , 

\ 101 S* / 

Then £&,«(#) will converge almost everywhere to ga(x), and by As­
sumption I, 

A*.aW = — > — = *«(*) 
£*,«(*) ga(X) 

boundedly a.e. in Q. On the other hand 

gfc,«—> g« as & —» oo 

in L«(Q) where # = £(£--1)""1. Hence, since hh%aD
av for | a | ^ w will 

converge strongly to A«Dai> in Lp(Q) by the Lebesgue dominated con­
vergence theorem 

(G(tfjb), v) = a(«*,iO = E {Aa{x, uk, • • • , JD"1***), Daz>) 
laUm 

= E (&.«> h,«Dav) 

-»• Z (g«,haD«v) 
\a\&m 

= a(«, z>) = (G(u), v). 

Thus for this subsequence, G(uk) converges weakly to G(u), the 
Lemma is proved, and the deduction of Theorem 1 from Theorem 2 
is complete. 

2. Let X be a complex Banach space which we assume to be sépara-
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ble and reflexive, X* its conjugate space, i.e. the space of bounded 
conjugate-linear functionals on X. For ^ G J * , UELX, the value of 
w a t u is denoted by (w, u). 

Let G be a mapping from an open set D of X into X*. 
DEFINITION. G is said to be demi-continuous if G is continuous from 

the strong topology on D to the weak topology on X*. 

LEMMA 1. Let G be a demi-continuous mapping of the open set D of 
X into X*. Suppose that for fixed UQ in D and w in X*, 

(2.1) Re (w - G(u)9 M o ~ « ) è O 

for all u in a dense subset Y of D. 
Then w = G(u0). 

PROOF OF LEMMA 1. Let u be an arbitrary element of D. Since Y is 
dense in J9, there exists a sequence {Vh} from Y such that Vk converges 
strongly to u in D as fe—»oo. Since G is demi-continuous, G{vu) con­
verges weakly to G(u) in X*. For each k, the inequality (2.1) holds 
with u replaced by Vk, i.e. 

Re (w — G(vk), Uo — Vk) ^ 0. 

However, w — G(vk)—>w — G(u) weakly in X* while u^ — Vk converges 
strongly to UQ — U, as k—>°o. Therefore 

(w — G(vk), uo — Vk) —» (w — G(«), ^o — «). 

Therefore 

(2.2) Re (w - G(«)> u0 - u) ^ 0, 

is true for all u in P . 
We assume that WT^G(UO) and prove a contradiction. Under this 

assumption, there exists v in X such that 

(w - G(«0), v) > 0. 

For / > 0 and sufficiently small, ut — u0+tv lies in D. Applying the in­
equality (2.2) with u replaced by ut, we obtain 

0 ^ Re (w — G(««)> UQ ~~ w«) = &e (G(ut) — w, ifo). 

Cancelling the positive multiplier /, we get 

Re (G(vt) - w, i>) è 0, 

or, by an obvious calculation, 

Re (G(««) - G(u0), ») è Re (w - G(«0), v). 
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As /—»0, the left-hand side of the last inequality converges to zero by 
the demi-continuity of G. The right-hand side is independent of L 
Hence 

0 è Re (w - G(«o), v) > 0, 

which is a contradiction proving the Lemma. 
DEFINITION. G is said to be monotone if f or all u and v of D 

(2.3) Re (GO) - G(v), u - v) è 0. 

(For Hilbert spaces, this definition is due to Minty [7]). 
DEFINITION. The mapping C of X into X* is said to be completely 

continuous if C is continuous from the weak topology on X to the strong 
onX*. 

DEFINITION. P is said to be a projection of X onto the closed subspace 
F if P is a bounded linear operator of X whose range is F with P2 = P. 
A sequence of projections {Pj} is said to be commutative increasing if 
forj<k}PjPk = PkPj = Pj. 

LEMMA 2. Let {P,-,j = l, 2, • • • } be a sequence of finite dimensional 
sub spaces of X with FjC.Fj+ifor all j . Suppose Pi is a projection of X 
onto F\. Then: 

(a) There exists a commutative increasing family of projections {Pj} 
beginning with Pi and such that Fj is the range of Pj. 

(b) If Fj is the range of Pf> then {P*} is a commutative increasing 
family of projections on Fj and Fj CFj+ifor every j . The pairing (w, u) 
for WÇLFJ and uÇzFj yields an isomorphism of Fj with Ff. 

PROOF OF LEMMA 2 (a). Pi is given. We construct the projections 
Pr by recursion assuming at the rth step that 

(2.4) PjPh = PhPj = Pj, j<k^r. 

We may assume without loss of generality that the codimension of 
Fj in Fj+i is one. Suppose we have constructed {Pi, • • • , Pr} satisfy­
ing the equations of (2.5) and wish to construct Pr+i so that 

(2.5) PjPk = PkPj = Pjy j <k£r+ 1. 

For k^r, (2.6) follows from (2.5). Since for j<k, FjC.Fk, it is always 
true that PkPj = Pj if Pj and Pk are projections on Fj and Fk respec­
tively with j<k. In order that PyP r+i = Py, on the other hand, it 
suffices that P rPr+i = Pr, since then 

P;Pr+l = (PyPr)Pr-fl = PyPfPr+1 * PjPr = PrÏOTJ < f. 

The nullspace of P r restricted to Pr+i is of dimension 1 and gener-
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ated by Uo5*0. By the Hahn-Banach theorem, there exists w in X* 
such tha t (w, uo) = 1 while (w, u)—0 for all u in Fr. We set Pr+iu 
= (u, w)uo+Pru. Obviously Pr+iUo = Uo, while for u in Fri Pr+iU = Pru 
= u. Thus Pr+iu — u for all u in Pr+i. Moreover, the range of Pr+i is 
contained in Fr+i. Hence Pr+i is a bounded projection of X on Fr+i. 
Furthermore, PrPr+iU = Pr{ (u, w)uo+Pru} =P^u = Prut so that 
P r P r + i = P r and the (r + l)st step of the recursion is complete. 

PROOF OF LEMMA 2 (b). Since JPj = Py and PjPk = PkPj = Pj for 
j < & , we find by taking adjoints that 

# 2 . 2 * * * * * * * 
(Pi) = (Pi) = Pi, Pi Pu = PuPi = P i , for i < *• 

Hence { P f } is a commutative increasing family of projections of X* 
with Fj = range of P / . Since for « G P / , Pk*u~Pk*Pfu = Pfu = u for 
every &>j, it follows that P / CPfc for j<&. 

Let i£y be the linear mapping of Fj into Pf defined by (KjW, u) 
= (w, u) for all wGPy. <Ky is one-to-one since KjW = 0 implies that 
(w, PjU)=0 for all w £ l , or Pjfiw = 0. Since Pjfiw = w for w&Fj, it 
follows that w = 0. 2£y is also onto since for wiGP/8 , there exists w2 in 
X* so that (T#2, W) = (wi, w) for all « in Py while ||Wi\\ = ||^2||. However, 
(KjPjfiW2, u) = (P*W2, u) — (w2, u) = (tt/i, w) for ̂  in Py, so that KJ(P?WÏ) 

= Wi. We know finally, that ||i£yw|| é | |w| | since -KTyze; is the restriction 
of w to a subspace. Hence the proof of the Lemma is complete. 

LEMMA 3. Let G be a demi-continuous map of X into X*, G = Go+Ci, 
Go monotone, C completely continuous. Let {Fj} be an increasing se-
quence of finite-dimensional sub spaces of X whose union is dense in X> 
{Pj} a commutative increasing family of projections of X, with Fj 
= range Pj. Let {uu} be an infinite sequence in X such that UkÇzFk for 
each k, Uk converges weakly to uo in X as k—> <*>, and Pk*G(uk) converges 
strongly to w in X*. 

Then W = G(UQ). 

PROOF OF LEMMA 3. Let j be a fixed integer, u an element of Fj so 
that PjU — u. Using the monotonicity inequality, we have for each k 

(2.6) Re (uk - Pju, G0(uk) - G0(Pju)) ^ 0. 

Since Uk converges weakly to Uo, it follows that 

Re (tfe - PjU, Go(PjU)) -> (no - Pyw, GQ(PJU)) 
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as fe—»oo. Since Uk&Fk, PkUk — Uk. For k>j, PkPj — Pj. Hence 

Re(uk—PjU, Go(uk)) = Re(PkUk—PkPjU,G(uk))--Re(uk--PjU)C(uk)) 

= Re(uk--PjU, PkG(uk)) — Re(Uk—PjU, C(uk)). 

Since as k—» <*> f̂c converges weakly to wo in X and C is completely 
continuous, C(uk) converges strongly to C(uo). Hence 

Re (uk — PjU, C(uk)) —» Re (u0 — PjU, C(uo)) 

as k—>oo. Finally, since Pk*G(uk) converges strongly to w, we have as 

Re (uk — Py^, PkG(uk)) —» Re («0 — -Pyw, w). 

Collecting the various limits, we have 

(2.7) Re («o ~ u, {w - C(^o)} - G0(«)) è 0 

for all u in i*y. Since j is arbitrary, the inequality (2.7) is true for all 
u in Uy -Fy, a dense subset of X. Applying Lemma 1, we see that 
W — C(UO) = GQ(UO), i.e. w = G(uo). Q.E.D. 

LEMMA 4. Let G be a continuous mapping of the finite dimensional 
Banach space Y into F* such that 

Re(G(u)9u) ^ c (M| ) - |M| 

where c(r)—>+ oo as r—»<*>. Then G is onto. 

PROOF OF LEMMA 4. Since F is finite dimensional, there exists a bi-
continuous linear map J of a Hubert space H onto F. Let / * be the 
dual map of F* onto H~H*. Consider G'~J*GJ. Then for LEH 

Re (G'A, h) = Re (J*GJh, h) = Re (GJh, Jh) è C ( | | / * | | ) | | /A | | 

^ ^(11*11)11*11-
Thus it suffices to consider the map G1 of the Hilbert space H into 
itself. We deform G' into the identity through the family Gl **tGf 

+ (l-t)I. Let w&H. For u in Hf Ogtgl 

Re(Gl(u)-w, u)=t Re(G'(*), «d + ( l - 0 M I H M H M I ^ * M I 

for ||w|| à M, so that Gl (u) T*W. Hence the degree of the map Gl on 
the ball ||w|| <M with respect to w is independent of t and for £ = 0, 
it is different from 0. Hence there exists u with ||w|| <M and G'(u) 
= w. Thus G' is onto and so is G. (This argument is essentially due to 
Visik [9].) 
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PROOF OF THEOREM 2. Let ze/bea fixed element of X*. We shall 
show that w lies in the range of G. Let F{ be the one-dimensional 
subspace of X* spanned by w, PI a bounded projection of -X** onto 
F(. Let P i = (P{)* and let Fi be the range of the projection Pi . By 
the separability of X, starting with Fi we may construct an increasing 
sequence {Py} of finite dimensional subspaces of X so that Uy Fj is 
dense in X. By Lemma 2, we may construct a commuting increasing 
sequence of projections {Pj) of X starting with P i and such that 
Py = range Py. 

For each fixed k, let Gk be the mapping of Fk into F£ given by 

* 
Gku = PkGu, u G Fk. 

For wGft , 

Re(Gku, u) = ReCP^Gw, «) = Re(Gw, Pku) = Re(Gw, #)èc(||«||)-\\u\\, 

while by the demi-continuity of G and the finite dimensionality of 
F£ t Gk is continuous from Fk to P*?. Since F{ is canonically iso­
morphic with Fk*, it follows from Lemma 4 that G* is onto. Hence 
there exists Uk in Fk with 

(2.8) GkUk = PkGuk = w 

since w lies in F{ QFk for all & ^ 1. 
Taking the real part of the inner product of equation (2.8) with 

Uk, we obtain 

(w9 Uk) = Re(PkGuk, Uk) = Re(Guk, uk) è c(||«*||)||«*||-

Hence 

«<lkll> ^ INI 
implying that ||«jb|| SM\ since c(r)—»+ oo as r—>+ oo. Since X is re­
flexive, we may choose a weakly convergent subsequence of the {uk} 
which we can assume to be the original sequence. Then Uk—>Uo weakly 
in X, Pk*G(uk) = w converges strongly to w in X*. Hence by Lemma 3, 
G(uo) —w, and the proof of the Theorem is complete. 

PROOF OF THEOREM 3. Let G be the operator from X to X* defined 
uniquely by 

(G(u), v) = a(u, v) 

for all v in X. Then G satisfies the conditions of Theorem 2 with C= 0. 
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