A BIORTHOGONAL SYSTEM WHICH IS NOT A TOEPLITZ BASIS

BY ALBERT WILANSKY AND KARL ZELLER

Communicated by Edwin Hewitt, June 7, 1963

We present a Banach space X with a biorthogonal system $\{b_n, f_n\}$, $b_n \in X$, $f_n \in X^*$, $f_i(b_j) = \delta_{ij}$, in which $\{b_n\}$ is fundamental, i.e., X is its linear closure, but $\{b_n\}$ is not a Toeplitz basis. We call $\{b_n\}$ a Toeplitz basis if there exists a regular matrix A such that for each $x \in X$, $\sum f_n(x)b_n$ is A-summable to x. It will be clear that $\{b_n\}$ is not a Toeplitz basis even if the method of summability is considerably more general than a matrix.

An example in which X is a non-Banach F space is given in [4, Theorem 13]. Toeplitz bases were introduced in [1], [2].

A series $\sum u_n$ is said to be weakly Cauchy if for every continuous linear functional f, $\sum f(u_n)$ is convergent.

LEMMA 1. Let X be a linear topological space with a biorthogonal system $\{b_n, f_n\}$. Suppose that there exists $x_0 \in X$ such that $\sum f_n(x_0)b_n$ is weakly Cauchy. Then if $\{b_n\}$ is a Toeplitz basis, $\sum f_n(x_0)b_n$ must converge weakly to x_0 .

For any $f \in X^*$, $\sum f_n(x_0)f(b_n)$ is convergent. It must converge to $f(x_0)$ since, for some regular matrix A, it is A-summable to $f(x_0)$.

The full force of the hypothesis is not used. It can be considerably weakened.

From Lemma 1 it follows that the promised example will be fulfilled by an example of a Banach space X of sequences $x = \{x_n\}$ in which, for each n, $f_n(x) = x_n$ defines $f_n \in X^*$; in which $\{\delta^n\}$ is fundamental, where $\delta^1 = (1, 0, 0, \cdots)$, $\delta^2 = (0, 1, 0, \cdots)$, \cdots ; in which $\sum \delta^n$ is weakly Cauchy; but in which $\sum \delta^n$ does not converge weakly to 1.

Let $B = (b_{nk})$ be a matrix which is a triangle, i.e., $b_{nn} \neq 0$, $b_{nk} = 0$ for k > n; which is coregular, i.e., $\chi(B) \equiv \lim_{B} 1 - \sum \lim_{B} \delta^{k} \neq 0$ where $\lim_{B} x = \lim_{n} \sum_{k} b_{nk} x_{k}$; for which $\{\delta^{n}\}$ is fundamental in $c_{B} = \{x : x \text{ is } B \text{ summable}\}$, $\|x\| = \sup_{n} |\sum_{k} b_{nk} x_{k}|$; but which has the property that no regular matrix D has $c_{D} = c_{B}$. (See [3, p. 657] for an example.)

Then $\sum \delta^n$ is weakly Cauchy since c_B has a weaker topology than that of c_0 , the space of null sequences with $||x|| = \sup |x_n|$, and, in the latter space $\sum \delta^n$ is weakly Cauchy.

If $\{\delta^n\}$ were a Toeplitz basis, by Lemma 1, we should have $\sum \delta^n$

converging weakly to 1. Since $\lim_{B} \in c_{B}^{*}$ this would yield $\chi(B) = 0$, contradicting the fact that B is coregular.

Since c_B is congruent with c, the space of convergent sequences with $||x|| = \sup |x_n|$ we have proved the following result.

THEOREM 1. The space c has a biorthogonal system $\{b_n, f_n\}$ in which $\{b_n\}$ is fundamental but is not a Toeplitz basis.

REFERENCES

- 1. B. R. Gelbaum, Expansions in Banach spaces, Duke Math. J. 17 (1950), 187-196.
- 2. V. Y. Kozlov, On a generalization of the concept of basis, Dokl. Akad. Nauk SSSR 73 (1950), 643-646.
- 3. A. Wilansky, Summability: the inset, replaceable matrices, the basis in summability space, Duke Math. J. 19 (1952), 647-660.
- 4. A. Wilansky and K. Zeller, The inverse matrix in summability: reversible matrices, J. London Math. Soc. 32 (1957), 397-408.

LEHIGH UNIVERSITY AND TÜBINGEN UNIVERSITY